
Asymtopic normality for

tessellation-based Betti numbers

Bjarke Hautop Kristensen

Bachelor thesis in statistics

Supervisor: Christian Pascal Hirsch

13. June 2023

1 Abstract

Topological data analysis is a powerful tool for analyzing complex datasets and extracting

meaningful topological properties. In this thesis, we explore the use of persistent Betti numbers,

which capture a multiscale perspective of topological changes. We present approaches for

computing persistent Betti numbers and establish two central limit theorems for persistent

Betti numbers. The first theorem applies to general filtrations that satisfy certain conditions,

with the Čech filtration being an example that satisfies these conditions. The second theorem

is for the Voronoi tessellation-adapted filtration. These theorems provide a fundamental

theoretical framework for statistical analysis and hypothesis testing in computational topology.

Additionally, we conduct simulations to investigate the behavior of persistent Betti numbers

under varying parameters, and propose a hypothesis test to determine if the number of points

follows a fixed distribution or stems from a Poisson distribution. Our findings demonstrate

the effectiveness of Voronoi tessellation in analyzing the topological structure of datasets.

1

Contents

1 Abstract 1

2 Introduction 3

3 Notation and tools 4

3.1 Spatial Statistics and Topological Data Analysis 4

3.2 Tessellations . 13

4 Central limit theorems for persistent Betti numbers 15

4.1 Poisson process with filtration . 16

4.2 Poisson process with tessellation-adapted Voronoi filtration 16

5 Proofs 16

5.1 Poisson process with filtration . 16

5.2 Poisson process with tessellation-adapted Voronoi filtration 21

6 Simulations 25

6.1 Persistent Betti tal . 25

6.2 Total persistence . 27

7 References 30

8 Appendix 31

2

2 Introduction

In recent years, topological data analysis has emerged as a powerful tool for analyzing complex

datasets and extracting meaningful topological properties [2]. One such property is Betti

numbers, which provide valuable insights into the topological changes across different levels of

a dataset. Betti numbers intuitively describe the number of q-dimensional holes in a simplicial

complex. Simplicial complexes are geometric objects built by joining points, edges, triangles,

tetrahedra, tetrahedra and polytopes of higher dimensions. They provide a powerful tool

for representing complex topological spaces in a way that is accessible for data analysis. By

capturing the fundamental structural elements of these spaces, simplicial complexes offer

a valuable framework for exploring and interpreting data in various fields, for example in

materials science [5]. We will focus on persistent Betti numbers, where persistent Betti

numbers also allow us to understand the time perspective of Betti numbers. Persistent Betti

numbers provide information about how long the topological properties are present in the

data set and at which levels.

We assume throughout this thesis that our data points come from a homogonous Poisson

process, which is a basic stochastic process that is widely used. The Poisson process models

the occurrence of events in continuous time or space, and has some important properties such

as independence, memoryless and a constant rate. In our context, the homogeneous Poisson

process acts as a natural model for the distribution of points in a dataset. These are some

ideas that are unlikely to apply in the real world, but this can be used as a model under a

null hypothesis.

First, in Section 4.1 we establish a central limit theorem for persistent Betti numbers

with a filtration that satisfies certain conditions. The proof is given in Section 5.1 and it

consists of showing that the persistent Betti number is weakly stabilizing and that it satisfies

the Poisson bounded moment criterion [7].

Then, in Section 4.2, we present a central limit theorem for persistent Betti numbers

with Voronoi tessellation-adapted filtering. Voronoi tessellation is a geometric partitioning

technique that creates a cell for each point with the associated area that is closer to that

point than to any other point. The proof is made in Section 5.2 and the proof is very similar

3

to the second proof, but some of the arguments need to be adapted to the new setup.

In section 6 we run simulations of the central limit theorem with Voronoi tessellation and

investigate what happens when we change the parameters. We also set up two hypothesis

tests. One has the null hypothesis of a fixed number of points and the alternative hypothesis

that the number of points follows a Poisson distribution. This test has a simulated power of

0.25. The second hypothesis test has the null hypothesis that the number of points follows a

Poisson distribution and the alternative hypothesis of a fixed number of points. This test has

a simulated power of 0.01.

3 Notation and tools

In this section, we provide relevant definitions that are necessary to go deeper into topological

data analysis and tessellations. In Section 3.1 we define, among other things, what a Poisson

process is, what a simple complex is, what Betti numbers are and what filtering is. From

these definitions we can now formulate Theorem 4.1, which is one of the main theorems we

will show.

In Section 3.2 we define what Voronoi tessellation is, which allows us to formulate Theorem

4.2, which is the second main theorem we will show.

3.1 Spatial Statistics and Topological Data Analysis

Poisson process in RN

In the results shown in this bachelor project, we will use the assumption that our points come

from a Poisson process. This is a relevant situation to consider because the assumption that

our points come from a Poisson process in RN means that the points are independent of each

other and that the probability of finding a point in a given spatial domain is proportional to

the size of that domain, which are assumptions that often make sense to make.

First, we need some introductory concepts, with definitions based on [3] and [4].

Definition 3.1 (Locally finite measure). A Borel measure is a locally finite measure,

if there for any point p ∈ RN there exists an open neighbourhood Np at p such that the

4

µ−measure of Np is finite.

Definition 3.2 (Point process). Let Nlf denote the space of locally finite set of points

φ ⊆ RN and equip it with the smallest σ-algebra, B, such that the maps

φ 7→ φ(A) := #(φ ∩ A)

are measureable for all Borel sets A ⊆ RN . The corresponding random variable X = {Xi}i≥1

with values in Nlf is called a point process.

To define what a pointprocess is we will also need the following definitions

Definition 3.3 (Intensity measure). For any point process P on RN we define the intensity

measure Λ : B :→ [0,∞] as

Λ(B) = E[P(B)], B ∈ B.

Definition 3.4 (Non atomic measure). A Non atomic measure µ is a measure, where

there for each measureable set A with µ(A) > 0 exists a subset B of A such that

µ(A) > µ(B) > 0.

We are now ready to define what a poisson process is

Definition 3.5 (Poisson process). Let Λ be a locally finite non atomic Borel measure

on RN . A poisson process P with intensity measure Λ is a point process that satifies the

following

1. P(A) ∼ Poi(Λ(A)) for any set A ⊆ RN ,

2. The random variables P(A1), . . . ,P(An(x)) are independent for all pairwise disjoint

A1, . . . , An(x) ⊆ RN .

We often need to consider a poisson process only on a subset of RN , so the following

definition is natural

5

Definition 3.6 (Restricted poisson process). For a poisson process P we define for any

set A ⊆ RN the restricted poisson process PA as the poisson process defined on A.

A special class of poisson processes are homogeneous poisson processes, where the expected

number of points in a set only depends on the volume of the set.

Definition 3.7 (homogeneous poisson processes). A poisson process, where the intensity

measure Λ = νλ, where ν is the Lebesgue measure and λ is a constant, is called a homogeneous

poisson processes.

Figure 1: Simulation of 40 points from a homogeneous poisson processes in [0, 1] × [0, 1].

Simplicial complex

Simplicial complex is a geometric object that is made up of the union of points, edges,

triangles, tetrahedra and higher dimensional polytopes. Formally, we use the following

definition

Definition 3.8 (Simplicial complex). A simplicial complex is a collection of K non-empty

subsets of a set K0, such that {v} ∈ K for all v ∈ K0, and if τ ⊂ σ and σ ∈ K, then τ ∈ K.

6

We call the elements of K0 kalder vi edges of K, and we call the of elements K the simplicies.

Furthermore we say that a simplex has dimension q or is a q-simplex, if it has cardinality

q + 1. We will use Kq to denote the collection of q-simplicies.

Figure 2: An example of a simplical complex.

An important example of a simplicial complex is the Čech complex which is constructed

as follos: Given a finite set of points K0 and a ϵ > 0 we can construct the Čech complex

Čϵ(K0) by taking the elmenets of K0 as edges in Čϵ(K0) and for each σ ⊂ K0 we let σ ∈

Čϵ(K0), if the ϵ-ball with center in σ has a non-empty intersection, that is

σ = {x0, . . . , xq} ∈ Čϵ(K0) ⇐⇒
q⋂

i=0

Bt(xi) ̸= ∅,

where Bt(xi) denotes the ball with center xi and radius t.

Homology

The idea behind homology is to understand the topological structure of your dataset in

a way that is invariant under rotation, scaling and more. In particular, we will focus on

Betti numbers and later persistent Betti numbers, which intuitively say something about the

number of q-dimensional holes in a simplicial complex K.

7

We consider a q-simplex σ = {i0, . . . , iq} as a sorted set. For q > 0 we define an

equivalence relation ij0 , . . . , il0 ∼ ilq , . . . , ij0 on two sorts of σ with even permutations. Let

⟨σ⟩ = ⟨ij0 , . . . , ijq⟩ be the equivalence class where ij0 < · · · < ijq .

We consider the field F2 with basis given by the q-simplicies of K, since we do not need

the orientation of our simplex. We can then construct a F2-vector space Cq(K) as

Cq(K) = SpanF2
{⟨σ⟩ | σ ∈ Kq},

for Kq ̸= ∅ and Cq(K) = 0 for Kq = ∅. Here SpanF2
(A) for a set A denotes a vector space

over F2, so the elements of A form a basis of the vector space. We define the boundary map

∂q : Cq(K) → Cq−1(K) as

∂q(⟨i0, . . . , iq⟩) =

q∑
l=0

⟨i0, . . . , ĩl, . . . , iq⟩, (1)

where ĩl means, that il is removed. We set Zq(K) = kernel ∂q and Bq(K) = image ∂q+1. We

can consider the boundary map as a matrix

Mq = (Mσ,τ)σ∈Kq−1,τ∈Kq ,

where the coefficients are given by (1).

For our definition of the Betti number to make sense, which we will give below, we need

the following theorem

Theorem 3.9. For any q ≥ 0 we have

Bq(K) ⊆ Zq(K)

Proof. If we show that ∂q ◦ ∂q+1(σ) = 0 for any σ = ⟨i0, . . . , iq+1⟩ ∈ Kq+1 then we are done.

So if q = 0 then we have that ∂q ◦ ∂q+1(σ) = 0 as per the definition. So suppose that q > 0.

8

Then we have

∂q∂q+1(σ) = ∂q

q+1∑
l=0

⟨i0, . . . , ĩl, . . . , iq+1⟩

=

q+1∑
l=0

∂q⟨i0, . . . , ĩl, . . . , iq+1⟩

=

q+1∑
l=0

[
l−1∑
j=0

⟨i0, . . . , ĩj, . . . , ĩl, . . . , iq+1⟩ +

q+1∑
j=l+1

⟨i0, . . . , ĩl, . . . , ĩj, . . . , iq+1⟩

]

= 0.

We can now define the Betti number.

Definition 3.10 (Betti number). For q ∈ N0 we define the q’th homology of a simplicial

complex K as the quotient vector space

Hq(K) := kernel(∂q)/ image(∂q+1).

We call the dimension

βq(K) := dimHq(K) = dim kernel(∂q) − dim image(∂q+1)

the q’th Betti number of K.

β0(K) can geometrically be understood as the number of connected components and

β1(K) can be understood as the number of 1-dimensional holes.

Example 3.11 (Computation of Betti numbers). We will compute the Betti numbers

for the following two simplicial complexes

K =
{
{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}

}
K ′ =

{
{d}, {e}, {f}, {d, e}, {d, f}, {e, f}

}

9

Figure 3: Geometric realization of K and K ′ respectively. The triangle on the left is colored

because we have {a, b, c} in our simplicial complex, while the triangle on the right is not

colored because {d, e, f} is not in our simplicial complex.

We start by computing the Betti number for K. We have the following sequence of vector

spaces and linear maps:

0 −→ F2
∂2−→ F3

2
∂1−→ F3

2
∂0−→ 0.

If we sort the bases of the vector space lexicographically, we have that the matrix representation

of ∂2 and ∂1 is given by

M2 =
(

1 1 1
)T

M1 =

1 1 0

1 0 1

0 1 1

 ∼

1 0 1

0 1 1

0 0 0

 ,

and the kernel of ∂0 is
{
{a}, {b}, {c}

}
. We notice the row space of ∂1 is{[

1 0 0
]T

,
[
0 1 0

]T}
.

Hence we have

β0(K) = dim ker(∂0) − dim image(∂1) = 3 − 2 = 1.

We have that the dimension of the image of M2 is 1, and that the kernel of M1 is the zero

vector, so we have that

β1(K) = dim ker(∂1) − dim image(∂2) = 1 − 1 = 0,

and that all higher Betti numbers are 0.

10

We will now compute the Betti numbers of K ′. Here we have the following sequence of

vector spaces and linear maps

0 −→ F3
2

∂1−→ F3
2

∂0−→ 0.

The only difference in the computation of Betti numbers of K ′ is that dim image(∂2) = 0

here, so we have

β0(K) = dim ker(∂0) − dim image(∂1) = 3 − 2 = 1

β1(K) = dim ker(∂1) − dim image(∂2) = 1 − 0 = 1,

and that all higher Betti numbers are 0.

Filtration

A filtration is a growing sequence of simplicial complexes that gives us a tool to examine the

structure of our data.

Let F(RN) denote all finite (non-empty) subsets of RN . For a function f on F(RN), there

exists a permutation invariant function f̃k on (RN)k for any k ≥ 1 such that f({x1, . . . , xk}) =

f̃k(x1, . . . , xk). We say that if f is measurable, then f̃k is measurable on (RN)k for any k ≥ 1.

Let κ : F(RN) → [0,∞] be a measurable function that satisfies the following:

(K1) 0 ≤ κ(σ) ≤ κ(τ), if σ is a subset of τ ,

(K2) κ is translation invariant, that is κ(σ + x) = σ for all x ∈ RN , where σ + x := {y + x :

y ∈ σ},

(K3) There is an increasing function ρ : [0,∞] → [0,∞] with ρ(t) < ∞ for t < ∞ such that

∥x− y∥ ≤ ρ(κ({x, y})),

where ∥.∥ is the Euclidean norm of RN .

An important example of κ is

κC({x0, . . . , xq}) = inf
w∈RN

max
0≤i≤q

∥xi − w∥

11

which defines the Čech filtration C(φ) = {C(φ, t)}t≥0. It induces the Čech complexet, as we

defined in ealier.

Given such a function κ we construct a filtration K(Ξ) = {K(Ξ, t) : 0 ≤ t < ∞} of

simplicial complexes from a finite point configuration Ξ ∈ F(RN) with

K(Ξ, t) = {σ ⊂ Ξ : κ(σ) ≤ t},

that is κ(σ) is the birthtime of a simplex σ in the filtration K(Ξ).

Definition 3.12 (Persistent Betti number). For a filtration K the (r, s)’th persistent

Betti number is defined as

βr,s
q (K) = dim

Zq(Kr)

Zq(Kr) ∩Bq(Ks)
, (r ≤ s),

where Zq(Kr) and Bq(Kr) are respectively the q’th cycle group and q’th boundary group.

The persistent Betti number can tell us the number of q-dimensional holes in K which

exists between r and s.

For a filtration K(Ξ) we denote the q’th persistent diagram with

Dq(Ξ) = {(bi, di) ∈ ∆ : i = 1, . . . , nq},

where ∆ = {(x, y) ∈ R2
: 0 ≤ x < y ≤ ∞} is determined by the unique decompoisiton of the

persistent homology. This means the points {(bi, di) ∈ ∆} with βr,s
q (K) = #{i : bi ≤ r, di > s}.

So bi denotes the birth and di when it disappears again. We set di = ∞ if the i’th homology

class survives forever. So we can understand the (r, s)-persistent Betti number βr,s
q (K) as

counting the number of birth-death pairs in a persistence diagram Dq(K) with birth before r

and death after s.

12

Figure 4: An example of a persistence diagram.

3.2 Tessellations

Tessellations divide a space of points into different cells based on some criteria. A widely used

tessellation is the Voronoi tessellation, which creates a cell for each point with the associated

area that is closer to that point than to any other point. This creates a partition of space

into cells, which are called Voronoi cells. An example of a Voronoi tessellation can be seen in

Figure 5. We use the following definition

Definition 3.13 (Voronoi tessellation). Let φ be a locally finite subset of RN . We define

the Voronoi cell C(x, φ) for a x ∈ φ as

C(x, φ) = {y ∈ RN : ∥y − x∥ ≤ ∥y − x′∥ for all x′ in φ.}

The Voronoi tessellation of φ is the set V (φ) = {C(x, φ) : x ∈ φ}.

13

Figure 5: Points from Figure 1 with Voronoi tessellation added.

To compute persistent Betti numbers, we will use a tessellation-adapted filtration where

entire simplices are added at filtering times given by their circumscribed circle radii. In other

words, a q-simplex f ∈ Ξq
n, defined by the points P0, . . . , Pm, belongs to the filtering at level

t > 0 if and only if its circumscribed circle radius, rC(f), satisfies rC(f) ≤ t, where rC(f) is

defined as

rC(f) := min
y∈RN

max
i≤m

|y − Pi|.

We will refer to this as the tessellation-customized filtering associated with the surfaces in the

tessellation. Let KVor denote the Voronoi tessellation-customized filtering. Note that KVor

does not satisfy (K3).

This is very similar to Čech filtering, the difference being when simplicies are added to

the simplical complex. In Čech filtering, simplicies are added based on pairwise distance

between points.

14

4 Central limit theorems for persistent Betti numbers

In this section we will formulate a central limit theorem for persistent Betti numbers with a

filtration satisfying (K1-K3). We will also formulate a central limit theorem persistent Betti

numbers with a tessellation-adapted Voronoi filtration. Using the existence of these central

limit theorems, one can test whether one’s points come from a homogeneous Poisson process

with unit intensity as we will do in Section 6.

We state here the necessary properties of functionals to obtain a version of the central

limit theorem. Let {Wn} be Borel subsets of RN satisfying the following conditions:

(A1) |Wn| = n for all n ∈ N.

(A2)
⋃

n≥1

⋂
m≥n Wm = RN

(A3) limn→∞∥(∂Wn)(r)∥/n = 0 for all r > 0 where A(r) is the set of points which are at most

r away from A.

(A4) There exists a constant γ > 0 such that supx,y∈Wn
|x− y| ≤ γnγ.

Given such a sequence, let W = W({Wn}) be the collection of all subsets A in RN of the

form A = Wn + x for a Wn in the sequence and a point x ∈ RN .

Let H be a functional that takes real values in F(RN). We say that H is translation

invariant if H(X + y) = H(X) for all X ∈ F(RN) and y ∈ RN . Let D0 denote the increment

in H obtained by adding {0}

D0H(X) = H(X ∪ {0}) −H(X), X ∈ F(RN).

We say the function H is weakly stabilized on W if there exists a random variable D(∞),

so D0H(PAn(x))
n.s.→ D(∞) for n → ∞ for any sequence {An(x) ∈ W}n≥1 going towards RN .

The Poisson limited moment criterion on W is given by

sup
0∈A∈W

E[(D0H(PA))4] < ∞.

We will now formulate the two central limit theorems mentioned above.

15

4.1 Poisson process with filtration

We will prove the following central limit theorem for a poisson process with a filtration

satisfying (K1-K3).

Theorem 4.1. Let P be a homogeneous Poisson point process with unit intensity. Suppose

that the sequence {Wn} satisfies conditions (A1-A4). Then for any 0 ≤ r ≤ s < ∞ we have

βr,s
q (K(PWn)) − E[βr,s

q (K(PWn))]

n1/2

d→ N(0, σ2
r,s) for n → ∞.

It can be shown, that σ2
r,s > 0 and Proposition 9.1 in [1] contains some ideas as to how

one can show this.

4.2 Poisson process with tessellation-adapted Voronoi filtration

We will show the following central limit theorem for a Poisson process with a Voronoi

tessellation. In the context of Voronoi tessellation, we will always consider the window

Wn = [−n
2
, n
2
]N . We cannot use Theorem 4.1, as Voronoi tessellation-adapted filtration does

not satisfy (K3).

Theorem 4.2. Let P be a homogeneous Poisson point process with unit intensity. Then for

any 0 ≤ r ≤ s < ∞ we have

βr,s
q (KVor(PWn)) − E[βr,s

q (KVor(PWn))]

n1/2

d→ N(0, σ2
r,s) for n → ∞.

5 Proofs

5.1 Poisson process with filtration

The proofs in this section are mainly based on [3].

Lemma 5.1. Let H be a functional that takes real values defined on F(RN). Assume that

H is translation invariant and weakly stabilizing on W and satisfies the Poisson bounded

moment condition. Then there exists a constant σ2 ∈ [0,∞) such that n−1V[H(PWn)] → σ2

and
H(PWn) − E[H(PWn)]

n1/2

d→ N(0, σ2) for n → ∞.

16

Proof. See Lemma 3.1 in [7].

Lemma 5.2. Let K = {Kt}t≥0 and K̃ = {K̃t}t≥0 be filtrations on Kt ⊂ K̃t for t ≥ 0. Then

|βr,s
q (K̃) − βr,s

q (K)| ≤
∑

j=q,q+1

(∣∣K̃s,j\Ks,j| + |{σ ∈ Ks,j\Kr,j : t̃σ ≤ r}
∣∣),

where K̃t,j (or Kt,j) is a set of j-simplicies in K̃t (or Kt) and t̃σ (or tσ) is the birth-time of σ

a filtration K̃ (or K).

Proof. See Lemma 2.11 in [3].

Corollary 5.3. The functional βr,s
q (K) is weakly stabilizing.

Proof of Theorem 4.1. For a fixed r ≤ s, we consider the persistent Betti number βr,s
q (K(·))

as a functional on F(RN) and check the 3 conditions given in Lemma 5.1. We have that it is

translation invariant, since κ is translation invariant from (K2). Korollar 5.3 gives us that it

is weakly stabilizing, so all we need is to show the Poisson bounded moment criterion on W .

Let Fq(Φ, r) be the number of q-simplices in K(Φ, r). We then have the following

|D0β
r,s
q (K(PA))| = |βr,s

q (K(PA ∪ {0})) − βr,s
q (K(PA))|

≤
∑

j=q,q+1

|Kj(PA ∪ {0}, s)\Kj(PA, s)|

≤
∑

j=q,q+1

Fj(PB̄ρ(s)(0)
, s)

≤
∑

j=q+1,q+2

P
(
Bρ(s)(0)

)j
Where in the first inequality we used Lemma 5.2, in the second inequality we used the

condition (K3), which gives us that the distance is bounded by the sphere with radius ρ(s).

The last inequality comes from the fact that we can bound the number of q-simplicies by the

number of points to the power of q + 1. We now have

E
[
|D0β

r,s
q (K(PA))|4

]
≤ E

[(
P
(
B̄ρ(s)(0)

)q+1
+ P

(
B̄ρ(s)(0)

)
|q+2

)4
]

≤ E
[(

2 · max
{
|PB̄ρ(s)(0)

)|q+1, |PB̄ρ(s)(0)
)|q+2

})4
]

≤ E
[
24 · max

{
|PB̄ρ(s)(0)

)|4q+4, |PB̄ρ(s)(0)
)|4q+8

}]
≤ 24 E

[
|PB̄ρ(s)(0)

)|4q+4
]

+ 24 E
[
|PB̄ρ(s)(0)

)|4q+8
]
.

17

Since P
(
B̄ρ(s)(0)

)
is poisson distributed, we have that all moments are bounded and thus we

have that the above expression is finite. Since the final expression does not depend on A, we

have that

sup
0∈A∈W

E[D0β
r,s
q (K(PA))4] < ∞,

as desired.

Lemma 5.4. Let P ⊆ RN be a locally finite set. For any fixed r ≤ s there exists D∞ and

R > 0 such that

D0β
r,s
q (K(PB̄a(0))) = D∞

for all a ≥ R.

To prove Lemma 5.4 we will need the two following Lemmas.

Lemma 5.5. Let A,B, U, V be subspaces of a vector space where A ⊂ U and B ⊂ V . Then

we have

dim
U ∩ V

A ∩B
≤ dim

U

A
+ dim

V

B
.

Proof. Since we have the formula dim(U∩V)+dim(U∪V) = dimU+dimV and dim(U/A) =

dimU − dimA, we have that

dim
U ∩ V

A ∩B
= dim

U

A
+ dim

U

B
+ (dimU ∪ V − dimA ∪B) ≤ dim

U

A
+ dim

V

B
,

as desired.

Lemma 5.6. Let D =
[
A B

]
be a matrix with submatrices A and B. Let l be the number

of collons in B. Then we have

dim kerD ≤ dim kerA + l

Proof. Lad B =
[
b1 . . . bl

]
, where bi is the i’th coloumn vector of B and set D(i) =[

A b1 . . . bi

]
. Then for any i we have

dim kerD(i) ≤ dim kerD(i−1) + 1.

By applying this iteratively, we get the desired result.

18

We will use that we almost certainly have that a homogeneous Poisson process P has infinite

points in RN that do not have accumulation points.

Proof of Lemma 5.4 Set P ′ = P ∪ {0}. Let Kr,a = K(PB̄a(0), r) be the simplicial complex

defined on PB̄a(0) with parameter r and correspondingly set K ′
r,a = K(P ′

B̄a(0)
, r). Using

Definition 3.12 we can write D0β
r,s
q (K(PB̄a(0))) as

D0β
r,s
q (K(PB̄a(0))) = dim

Zq(K
′
r,a)

Zq(K ′
r,a ∩Bq(K ′

s,a)
− dim

Zq(Kr,a)

Zq(Kr,a) ∩Bq(Ks,a)

= (dimZq(K
′
r,a) − dimZq(Kr,a))

− dim
(
Zq(K

′
r,a) ∩Bq(K

′
s,a)

)
+ dim

(
Zq(Kr,a) ∩Bq(Ks,a)

)
So we can consider the stability with respect to a for dimZq(Kr,a) and dimZq(Kr,a)∩Bq(Ks,a).

So let’s start with dimZq(Kr,a). Since dim only takes non-negative values, it is enough to

show that it is bounded and non-decreasing for the limit to exist. We have that Kr,a ⊆ K ′
r,a

and therefore we have that Zq(Kr,a) ⊆ Zq(K
′
r,a). We now write K ′

r,a as a disjoint union

K ′
r,a = Kr,a ⊔K0

r,a, where K0
r,a is the set of simplices, that have point 0 and let K0

r,a,q be the

set of simplices of order q, so that K0
r,a,q = {σ ∈ (K ′

r,a)q : 0 ∈ σ}.

Let ∂q,a and ∂′
q,a be the qth boundary mapping on Kr,a and K ′

r,a respectively. Then we

get the following block matrix

∂′
q,a =

M1,ρ 0

M2,ρ ∂q,a

 ,

where the first columns and columns are ordered by simplices in K0
r,a,q and Kr,a,q−1 and the

second columns and columns correspond to simplices in Kr,a.

For any simplex σ ∈ K(P, r) containing the point 0, we have that it is included in Bρ(r)(0).

Therefore, the set K0
r,a,q is independent of a for a ≥ ρ(r), which we denote by K0

r,∗,q. Now we

can use Lemma 5.6 on the matrix form given above, where we set D = ∂′
q,a, A =

 0

∂q,a

 and

B =

M1,ρ

M2,ρ

. Then we have

dimZq(K
′
r,a) − dimZq(Kr,a) ≤ |K0

r,a,q| = |K0
r,∗,q|,

for a ≥ ρ(r) and it is thus bounded for any fixed r.

19

We will now show that it is non-decreasing. So we define a homomorphism given by

f :
Zq(K

′
r,a1

)

Zq(Kr,a1)
∋ [c] 7→ [c] ∈

Zq(K
′
r,a2

)

Zq(Kr,a2)

for a1 ≤ a2. This mapping is well-defined, since Zq(Kr,a1) ⊂ Zq(Kr,a2) and correspondingly

that Zq(K
′
r,a1

) ⊂ Zq(K
′
r,a2

). We have that the kernel of f is trivial, since if f [c] = 0 then

c ∈ Zq(Kr,a2) and since a1 ≤ a2 we also have c ∈ Zq(Kr,a1). Since the kernel is trivial, f is

injective. Thus we have the inequality

dimZq(K
′
r,a1

)/Zq(Kr,a1) ≤ dimZq(K
′
r,a2

/Zq(Kr,a2),

which shows that it is non-decreasing. So we have now shown the stability of dimZq(Kr,a).

We will now show the stability of dim(Zq(Kr,a) ∩Bq(Ks,a)). We will use the same proof

technique as above. From Lemma 5.5 we have that

dim
Zq(K

′
r,a) ∩Bq(K

′
s,a)

Zq(Kr,a) ∩Bq(Kr,a)
≤ dim

Zq(K
′
r,a)

Zq(Kr,a)
+ dim

Bq(K
′
r,a)

Bq(Kr,a)
.

As before, we again have that |K0
s,a,q+1| = |K0

s,∗,q+1| for all a large enough. Thus, we have

that

dimZq(K
′
r,a) ∩Bq(K

′
s,a) − dimZq(Kr,a) ∩Bq(Ks,a) ≤ |K0

r,∗,q| + |K0
r,∗,q+1|,

and thus we have shown it is bounded. Similarly as before, we can show that the kernel is

trivial and thus injective in the following homomorphism

f :
Zq(K

′
r,a1

) ∩Bq(K
′
s,a1

)

Zq(Kr,a1) ∩Bq(Ks,a1)
∋ [c] 7→ [c] ∈

Zq(K
′
r,a2

) ∩Bq(K
′
s,a2

)

Zq(Kr,a2) ∩Bq(Ks,a2)
,

for a1 ≤ a2. This implies that it is not decreasing as desired. This concludes the proof of the

Lemma.

Proof of Korollar 5.3 Let R > 0 be chosen such that it satisfies Lemma 5.4 and let {An ∈

W}n≥1 be a sequence going towards RN . Then if there exists an n0 ∈ N then BR(0) ⊂ An

for all n ≥ n0.

For n ≥ n0 we define Lr,n = K(PAn , r) to be the simplicial complex defined on PAn with

parameter r. Since An is bounded there exists a > R so

BR(0) ⊂ An ⊂ Ba(0).

20

Using the same approach as in Lemma 5.4, where we showed injectivity, we can show that

Zq(K
′
r,R)

Zq(Kr,R)
⊆

Zq(L
′
r,n)

Zq(Lr,n)
⊆

Zq(K
′
r,a)

Zq(Kr,a)
,

where Kr,a = K(PB̄a(0), r) as before. From our choice of R, we have that the dimension of

Zq(K
′
r,R)/Zq(Kr,R) and Zq(K

′
r,a)/Zq(Kr,a) are equal for n ≥ n0. Thus, we have that

dimZq(K
′
r,R − dimZq(Kr,R) = dimZq(L

′
r,n) − dimZq(Lr,n).

Similarly, we can show that dimZq(L
′
r,n) ∩ Bq(L

′
r,n) − Zq(Lr,n) ∩ Bq(Lr,n) is invariant for

n ≥ n0. We have shown that it becomes constant and thus we have shown that βr,s
q (K) is

weakly stabilizing, as desired.

5.2 Poisson process with tessellation-adapted Voronoi filtration

There are only a few differences in the proof of Theorem 4.2 compared to Theorem 4.1. The

differences are

(1) Some of the arguments in Lemma 5.4 to be used to show that Br,s
q (KVor) is weakly

stabilizing, analogous to the proof of Corollary 5.3.

(2) Show that Br,s
q (KVor(·)) satisfies the Poisson bounded moment criterion on W, as

analogous to the proof of Theorem 4.1.

We will start with some introductory remarks. Set CA,0 to be the Voronoi cell for 0 in

PA ∪ {0}. When the cell CA,0 is added to the cells for PA, the cells closest to it will change.

So set RA,0 to be the smallest positive integer so that all finite Voronoi cells that are changed

by the addition of CA,0 are contained in BRA,0
(0). The idea behind the proof is that we can

ensure that RA,0 does not get too big by making a box around {0} and dividing the box

into a grid, and showing that only points inside this grid are affected by the addition of {0}.

Furthermore, we set Ξ
(0)
A,0 to be Voronoi vertices for PA ∪ {0} and Ξ

(0)
A to be Voronoi vertices

for PA.

Proof of (1). In the proof of Lemma 5.4, some of the arguments need to be changed. To

restrict dimZq(K
′
r,a) − dimZq(Kr,a) we can do the following. Let KU

r,a,q denote the set of

21

simplices outside the stability radius RA,0 and KI
r,a,q denote the set of simplices inside the

stability radius RA,0. We note that KU
r,a,q is independent of a for a > RA,0, which we denote

by KU
r,∗,q. Using Lemma 5.6 twice, we have that

dimZq(K
′
r,a) − dimZq(Kr,a) = dimZq(K

′
r,a) − dimZq(Kr,a) − |KU

r,a,q| + |KU
r,a,q|

≤
∣∣dimZq(Kr,a) − |KU

r,a,q|
∣∣ +

∣∣dimZq(K
′
r,a) − |KU

r,a,q|
∣∣

≤ |KU
r,a,q| + |KI

r,a,q|

= |KU
r,∗,q| + |KI

r,a,q|,

and since P is a locally finite set we have KI
r,a,q is finite and hence bounded for any fixed r.

Proof of (2). We will show it in the case where A is a cube with center x, that is A is on the

form

An(x) = [−n/2, n/2]N + x

As in Theorem 4.1 we need to show that

sup
0∈A∈W

E
[∣∣Kj(PA ∪ {0}, s)\Kj(PA, s)

∣∣4]
for j = q, q + 1 is bounded.

Define

Er,n,x :=
{
A√

r(
√
rz) ∩ PA ̸= ∅ for all

√
rz ∈

√
rZN ∩ An(x)

}
to denote the outcome that for any point

√
rz ∈

√
rZN ∩ An(x), the

√
r-case A√

r(
√
rz)

contains at least one point from PA. To show the moment condition, we need the following

Lemma.

Lemma 5.7. (Er,n,x happens with high probability). There exists a c1 > 0 such that for all

r > 1we have

sup
n≥0

sup
x∈RN

P(Ec
r,n,x) ≤ exp(−c1r

N/2)

Proof. We can write Er,n,x as

Er,n,x =
⋂

√
z∈

√
rZN∩An(x)

{A√
r(
√
rz) ∩ P ̸= ∅}.

22

We can now notice that |
√
rZN ∩ An(x)| ≤ (

√
r + 1)N and hence we have

P(Ec
r,n,x) ≤ |

√
rZN ∩ An(x)|P(A√

r(
√
rz) ∩ P = ∅) ≤ C(r + 1)N exp(−rN/2),

where we bounded P(A√
r(
√
rz)∩P = ∅) by using P is a Poisson process. We can now notice

that the right hand side is exp
(
−rN/2(1 + o(1))

)
and hence there exists a constant c1 > 0

such that

sup
n≥0

sup
x∈Qn

P(Ec
r,n,x) ≤ exp(−c1r

N/2),

as desired.

Lemma 5.8. For any k ≥ N2 + 9 we have that

Ek/(4N),n,x ⊆ {RA,0 ≤ k},

Proof. We will start by showing for any k ≥ N2 + 9 that

(a) Under the event Ek/(4N),n,x, any cell with center in A
k/(4N)−(2N+2)

√
k/(4N)

(x) is contained

in A
k/(4N)−2

√
k/(4N)

(x),

(b) Under the event Ek/(4N),n,x(x), the intersection set between any cell with center outside

A
k/(4N)+(N−1)

√
k/(4N)

(x) and with A
k/(4N)−2

√
k/(4N)

(x) is empty.

Proof of (a). Let C be a cell with center at P ∈ A
k/(4N)−(2N+2)

√
k/(4N)

(x) and consider an

arbitrary point P ′ outside A
k/(4N)−2

√
k/(4N)

(x). Let P ′′ be the closest point on the boundary

of A
k/(4N)−2

√
k/(4N)

(x). Then we have that |P ′ − P | ≥ |P ′ − P ′′| +
(2N+2)

√
k/(4N)−2

√
k/(4N)

2
=

|P ′ − P ′′| + N
√
k/(4N). Under the event Ek/(4N),n,x, the distance from P ′ to one of the

centers is at most |P ′ − P ′′| +
√

Nk/(4N) < |P ′ − P | and thus P ′ /∈ C.

Proof of (b). Let C be a cell with center P ∈ RN\A
k/(4N)+(N−1)

√
k/(4N)

(x) and let P ′ be any

point inside A
k/(4N)−2

√
k/(4N)

(x) and let P ′′ be the closest point to the edge of A
k/(4N)−2

√
k/(4N)

.

Then we have that |P ′ − P | ≥ |P ′ − P ′′| + N
√
k/(4N). But under the event Ek/(4N),n,x, the

distance from P ′ to one of the centers is at most |P ′ − P ′′| +
√
Nk/(4N) < |P ′ − P | and

thus P is not contained in A
k/(4N)−2

√
k/(4N)

.

Now this gives that under the event Ek/(4N),n,x, a cell with center in

A
k/(4N)−(2N+2)

√
k/(4N)

(x) contained in A
k/(4N)−2

√
k/(4N)

(x), and thus no cell with center

outside A
k/(4N)+(N−1)

√
k/(4N)

(x) cannot change by the addition of {0} to PA.

23

We can bound the k/(4N) + (N − 1)
√

k/(4N) box with a sphere of radius
√
N
(
k/(4N) +

(N − 1)
√

k/(4N)
)
/2 = k/(4

√
N) +

√
kN/4 −

√
k/4, hence we have

A
k/(4N)+(N−1)

√
k/(4N)

(x) ⊆ Bk/(4
√
N)+

√
kN/4−

√
k/4(x)

We now notice that for k ≥ N2 + 9

k

4
√
N

+

√
kN

4
−

√
k

4
≤ k

4
+

√
kN

4

≤ k

4
+

3
√
k ·

√
k

4

= k

and hence for any k ≥ N2 + 9 we have

Ek/(4N),n,x ⊆
{
RA,0 ≤

k

8
√
N

+
N − 1

2
·
√

k

4

}
⊆

{
RA,0 ≤ k

}
,

as desired.

We are now ready to prove Theorem 4.2.

Proof of Theorem 4.2. By using the above we have

E
[∣∣Kq(PA ∪ {0}, s)\Kq(PA, s)

∣∣4] ≤ E
[∣∣Ξ(0)

A,0(BR0,A(0))
∣∣4q+4

]
≤

∑
k≥0

E
[∣∣Ξ(0)

A,0(Bk+1(0))
∣∣4q+4 · 1{RA,0∈(k,k+1]}

]
≤

∑
k≥0

√
E
[∣∣Ξ(0)

A,0(Bk+1(0))
∣∣8q+8 ·

√
P(RA,0 > k),

where in the first inequality we used that we can limit the number of q-simplicies by the

number of points raised to q + 1 and in the last inequality we used Cauchy-Schwarz. We will

now bound the two expressions inside the sum separately. We know from Lemma 7 in [5]

that there exists a constant c2 > 0, so√
E
[∣∣Ξ(0)

A,0(Bk+1(0))
∣∣8q+4

]
≤ (k + 1)c2 .

24

Using Lemma 5.8, we have for k ≥ N2 + 9 that

P(RA,0 ≤ k) ≥ P
(
Ek/(4N),n,x

)
and hence by using Lemma 5.7 we have there exists a c1 > 0 such that

P(RA,0 > k) ≤ P(Ec
k/(4N),n,x) ≤ exp(−c1 · (k/(4N))N/2).

So we can now conclude there exists c1, c2 > 0 such that

sup
0∈A∈W

E
[∣∣Kq(PAn(x) ∪ {0}, s)\Kq(PAn(x), s)

∣∣4] ≤
N2+8∑
k=0

(k + 1)c2 ·
√

P(RA,0 > k)

+
∞∑

k=N2+9

(k + 1)c2 ·
√

exp
(
−c1 · (k/(4N))N/2

)
,

where the last sum converges according to the quotient criterion, as desired.

6 Simulations

In this section we will simulate Theorem 4.2 for different windows W ⊆ R3, and for different

numbers of simulations, m. We do this because we want to show that asymptotic normality

holds already for medium-sized windows. The simulations are made by simulating points

from a homogeneous Poisson process in the window and finding Voronoi tessellations for

these points. Next, the vertices, edges and faces are extracted from the Voronoi tessellations

that were calculated and the corresponding persistence diagram is calculated. It appears that

the simulation time depends linearly on the number of simulations and depends quadratically

on the number of points.

We check for normality by creating a QQplot and a histogram. The histogram includes a

normal distribution with mean 0 and empirical variance.

6.1 Persistent Betti tal

A typical persistence chart looks like Figure 4, so from this we choose to consider the first

(15, 25)-persistent Betti number, β15,25
1 . I examine for normality by creating a QQplot and a

25

histogram of the standardized total persistence. The histogram includes a normal distribution

with mean 0 and empirical variance.

In the following plots, the window is W = [−200, 200]3, the number of points is n = 500

and the number of simulations, m, is given.

Figure 6: Left plot is for m = 100 and right plot for m = 500.

We see in Figure 6 that it looks just like a normal distribution even for a small m.

If we try to change the number of points to come from a Possison distribution with

intensity 500/4003, and thus a mean of 500, instead of a fixed number of points, we would

expect a larger spread. We see in Figure 7 that the empirical spread is about one and a half

times as large here compared to before, when we had a fixed number of points. By making

the window W larger, we would expect a larger spread as the points become more dispersed.

In particular, we see that the empirical mean and spread for W = [−200, 200]3 was µ = 1180

and s = 3.5 respectively, while for W = [−400, 400]3 it was µ = 295 and s = 1.3.

Figure 7: Left plot is for m = 500, mean 500 and W = [−200, 200]3. Right plot is for

m = 500, n = 500 and W = [−400, 400]3.

26

Hypothesis test

We can define the following hypothesis we want to test

H0 : Fixed number of points

HA : Poisson distribution.

To test this hypothesis and find the strength of the test, we will generate data from the

window W = [−200, 200]3, M = 500 simulations and either n = 200 or intensity 200/4003, i.e.

mean 200. We will repeat this 100 times and thus calculate a 95% confidence interval for the

mean value based on asymptotic normality. The confidence interval became [209.1; 214.1].

We will reject the null hypothesis if the empirical mean is outside the confidence interval.

We can then calculate the power of this test by generating data from the alternative hypothesis

and seeing how often the empirical mean is outside our confidence interval. We did this 100

times, and the empirical mean was outside the confidence interval 25 out of 100 times. So we

have that the simulated power of the test is 0.25.

Similarly, we can make the opposite hypothesis, i.e.

H0 : Poisson distribution

HA : Fixed number of points.

and calculate the 95% confidence interval for the mean. The confidence interval was

[208.9; 216.2]. Again, we generated data under the alternative hypothesis 100 times and

an empirical mean value was in the confidence interval 1 out of 100 times. So we have the

simulated power of the test is 0.01.

So we can conclude that our test is okay at detecting deviations from a fixed number of

points, while less good at detecting deviations from the number of points following a Poisson

distribution.

6.2 Total persistence

In [5] it is shown that there is a functional central limit theorem for the related M -bounded

persistent Betti number. One can imagine that there is also a functional central limit theorem

27

for persistent Betti numbers. We will therefore try to examine the sum of all lifetimes, which

we will call total persistence.

In the following plots, the window is W = [−200, 200]3, the number of points is n = 500

and the number of simulations, m, is given.

Figure 8: Left plot is for m = 100 and right plot for m = 500.

We also see in Figure 8 that for total persistence, it nicely resembles a normal distribution

even for a small m.

As before, we try to change n to follow a Poisson distribution with mean 500 and try to

change the window to W = [−400, 400]3.

28

Figure 9: Left plot is for m = 500, mean 500 and W = [−200, 200]3. Right plot is for

m = 500, n = 500 and W = [−400, 400]3.

In 9 we see the same trend as before, i.e. that the spread increases by about one and a

half times when we let the number of points come from a Poisson distribution. When the

window becomes larger, we again see the same trend, that the mean value and the spread

become larger.

29

7 References

[1] Christophe A. N. Biscio, Nicolas Chenavier, Christian Hirsch, and Anne Marie Svane.

Testing goodness of fit for point processes via topological data analysis. Electronic Journal

of Statistics, 14(1):1024 – 1074, 2020.

[2] Alessandra Cipriani, Christian Hirsch, and Martina Vittorietti. Topology-based goodness-

of-fit tests for sliced spatial data. Computational Statistics & Data Analysis, 179:107655,

2023.

[3] Yasuaki Hiraoka, Tomoyuki Shirai, and Khanh Duy Trinh. Limit theorems for persistence

diagrams. The Annals of Applied Probability, 28(5):2740–2780, 2018.

[4] Christian Hirsch. Caput Statistics: Topological Data Analysis.

[5] Christian Hirsch, Johannes Krebs, and Claudia Redenbach. Persistent homology based

goodness-of-fit tests for spatial tessellations. arXiv preprint, 2022.

[6] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington.

A roadmap for the computation of persistent homology. EPJ Data Science, 6(1), aug

2017.

[7] Mathew D. Penrose and Joseph E. Yukich. Central limit theorems for some graphs in

computational geometry. The Annals of Applied Probability, 11(4):1005 – 1041, 2001.

[8] Claudia Redenbach and André Liebscher. Random Tessellations and their Application

to the Modelling of Cellular Materials, pages 73–93. Springer International Publishing,

Cham, 2015.

30

8 Appendix

Code used to make the simulations ued in Section 6.

Computing tesselation

import numpy as np

from s c ipy . s t a t s import gamma

from s c ipy . s p a t i a l . d i s t anc e import pdist , euc l i d ean

from s c ipy . s p a t i a l import Delaunay , ConvexHull

from t e s s import Container

import mu l t i p ro c e s s i ng as mp

import seaborn as sns

import pyvoro

import time

s t a r t t i m e = time . time ()

n = 500

import numpy as np

minv = np . array ([−200 , −200, −200])

maxv = np . array ([2 0 0 , 200 , 2 0 0])

def containment (c e l l , minv = minv , maxv = maxv) :

return np . a l l (minv< np .min(np . vstack (c e l l . v e r t i c e s ()) ,

a x i s = 0)) and

np . a l l (maxv> np .max(np . vstack (c e l l . v e r t i c e s ()) , a x i s = 0))

npool = 10

31

nsims = 10

po i s = [np . random . rand (npoi , 3) ∗ (maxv − minv) + minv

for in range (nsims ∗ npool)]

print (’ sim done ’)

import p i c k l e

import gc

def f a c e v e r t s (pt) :

”””Face v e r t i c c e s

Arguments

pt : c e l l c en t e r s

Resu l t

Face v e r t i c c e s

”””

return [np . array (c . v e r t i c e s ()) [f]

for c in Container (pt ,

l i m i t s = [minv , maxv] ,

r a d i i = None ,

p e r i o d i c = True)

for f in c . f a c e v e r t i c e s ()

i f containment (c)]

path = ’ . / s im data / t e s s / ’

ws ize = 1

for pts , lab in zip ([po i s] ,

[’ po i s ’]) :

print (lab)

def dump vor (i) :

32

p i c k l e . dump(pyvoro . compute voronoi (pts [i] ,

l i s t (np . array (l i s t (zip (∗ [minv , maxv])))) ,

100 , r a d i i = [] , p e r i o d i c = [True] ∗ 3) ,

open(’ {}{}{} . p ’ . format (path , lab , i) , ’wb ’))

[dump vor (i) for i in range (len (pts))]

end time = time . time ()

execut i on t ime = round(end time − s t a r t t i m e)

execu t i on t ime in minut e s = round(execut i on t ime / 60)

print (” Execution time : ” , execut i on t ime in minute s , ” minutes ”)

Extraction of corners, edges and faces

from s c ipy . c l u s t e r . h i e ra r chy import s i n g l e , f c l u s t e r

import pyvoro

from s c ipy . s p a t i a l import d i s t ance

import pandas as pd

import numpy as np

import time

s t a r t t i m e = time . time ()

minv = np . array ([−200 , −200, −200])

maxv = np . array ([2 0 0 , 200 , 2 0 0])

def containment (c e l l , minv = minv , maxv = maxv) :

return np . a l l (minv< np .min(np . vstack (c e l l [’ v e r t i c e s ’]) ,

a x i s = 0)) and

33

np . a l l (maxv> np .max(np . vstack (c e l l [’ v e r t i c e s ’]) ,

a x i s = 0))

def c l u s t e r v e r t i c e s (tes , eps = 1e −5):

””” C lu s t e r i n g o f v e r t i c e s

Arguments

t e s : t e s s e l l a t i o n

eps : t h r e s h o l d f o r c l u s t e r i n g

Resu l t

c l u s t e r e d v e r t i c e s t o g e t h e r wi th l i s t d e s c r i b i n g the

a s s o c i a t i on o f the unc l u s t e r ed v e r t i c e s to the c l u s t e r s

”””

#c o l l e c t v e r t i c e s from c e l l s −− t ake in t o account p e r i o d i c bc

t e s = [c for c in t e s i f containment (c)]

v e r t s unc = [np . array (ve r t)

for c e l l in t e s

for ver t in c e l l [’ v e r t i c e s ’]

i f containment (c e l l)]

cl map = f c l u s t e r (s i n g l e (d i s t anc e . pd i s t (

ver t s unc , ’ euc l i d ean ’)) ,

eps ,

c r i t e r i o n = ’ d i s t anc e ’) − 1

v e r t s c l u s t = [[p] + l i s t (v)

for p , v in zip (cl map ,

ve r t s unc)]

return pd . DataFrame (v e r t s c l u s t) . groupby (0) .

34

mean () . va lues , cl map

#compute o f f s e t s f o r each c e l l to g l o b a l v e r t e x id

compute o f f s e t = lambda t e s : [0] +

l i s t (np . cumsum ([len (c e l l [’ v e r t i c e s ’])

for c e l l in t e s]))

def c l u s t e r i n g (t e s) :

””” L i s t o f c a v i t i e s , f a c e s and edges g i ven by i d s o f

c l u s t e r e d v e r t i c e s

Arguments

t e s : t e s s e l l a t i o n

Resu l t

L i s t o f c a v i t i e s , f a c e s and edges g i ven by i d s o f

c l u s t e r e d v e r t i c e s

”””

t e s = [c for c in t e s i f containment (c)]

o f f s e t = compute o f f s e t (t e s)

, cl map = c l u s t e r v e r t i c e s (t e s)

#unc lu s t e r ed c a v i t i e s and t h e i r v e r t i c e s

cavs unc = [cl map [range (l , h)]

for l , h in zip (o f f s e t ,

np . r o l l (o f f s e t , −1))] [: −1]

#unc lu s t e r ed f a c e s and t h e i r v e r t i c e s

f a c e s u n c = [np . r o l l (cl map [np . array (f a c e [’ v e r t i c e s ’]) + o] ,

−np . argmin (cl map [np . array (f a c e [’ v e r t i c e s ’]) + o]))

for c e l l , o in zip (tes ,

35

o f f s e t)

for f a c e in c e l l [’ f a c e s ’]

i f containment (c e l l)]

#order f a c e s

f a c e s u n c = [l i s t (np . r o l l (f a c c [: : − 1] ,

−np . argmin (f a c c [: : − 1]))

i f f a c c [1] > f a c c [−1]

else f a c c)

for f a c c in f a c e s u n c]

f a c e s u n c = [l i s t (np . r o l l (f a c c [: : − 1] ,

−np . argmin (f a c c [: : − 1]))

i f f a c c [1] > f a c c [−1]

else f a c c)

for f a c c in f a c e s u n c i f

len (np . unique (f a c c)) > 2]

#unc lu s t e r ed edges

edges unc = [(cl map [np . array (ve r t) + o]) . t o l i s t ()

for c e l l , o in zip (tes ,

o f f s e t)

for f a c e in c e l l [’ f a c e s ’]

for ver t in l i s t (zip (f a c e [’ v e r t i c e s ’] ,

np . r o l l (f a c e [’ v e r t i c e s ’] , 1)))

i f containment (c e l l)]

return [[l i s t (x) for x in set ([tuple (x) for x in

36

[sorted (c f e , key = kf)

for c f e in c f e s]])]

for c f e s , k f in zip ([cavs unc , f ace s unc , edges unc] ,

[lambda x : 0 , lambda x : 0 , None])]

from mu l t i p ro c e s s i ng import Pool

from s c ipy . s p a t i a l import KDTree , d i s t anc e

import warnings

import p i c k l e

import pandas as pd

import numpy as np

path = ’ . / s im data / t e s s / ’

path cu = ’ . / s im data / c l u s t / ’

l ab s = [’ po i s ’]

nsample = 500

c l u s t e r e d v o r = []

v e r t s v o r = []

for lab in l ab s :

print (lab)

with warnings . catch warn ings () :

warnings . s i m p l e f i l t e r (” i gnor e ”)

37

def c l v (i) :

i f i %1==0:

print (i)

t e s s = p i c k l e . load (open(’ {}{}{} . p ’ . format (path , lab , i) ,

’ rb ’))

p i c k l e . dump(c l u s t e r i n g (t e s s) , open(’ {} c lu {}{} . p ’ . format (

path cu , lab , i) , ’wb ’))

print (’ c l u s t e r i n g done ’)

p i c k l e . dump(c l u s t e r v e r t i c e s (t e s s) [0] ,

open(’ {} c l v {}{} . p ’ . format (path cu , lab , i) , ’wb ’))

del t e s s

[c l v (i) for i in range (nsample)]

end time = time . time ()

execut i on t ime = round(end time − s t a r t t i m e)

execu t i on t ime in minut e s = round(execut i on t ime / 60)

print (” Execution time : ” , execut i on t ime in minute s , ” minutes ”)

Computing the persistence diagram

import warnings

from s c ipy . s p a t i a l . qhu l l import Qhul lError

import gudhi

from s k l e a r n . decomposit ion import PCA

from mu l t i p ro c e s s i ng import Pool

import p i c k l e

38

from s c ipy . c l u s t e r . h i e ra r chy import s i n g l e , f c l u s t e r

from s c ipy . s p a t i a l import d i s t ance

import pandas as pd

import numpy as np

import time

s t a r t t i m e = time . time ()

def c l u s t e r v e r t i c e s (tes ,

eps = 1e −5):

””” C lu s t e r i n g o f v e r t i c e s

Arguments

t e s : t e s s e l l a t i o n

eps : t h r e s h o l d f o r c l u s t e r i n g

Resu l t

c l u s t e r e d v e r t i c e s t o g e t h e r wi th l i s t d e s c r i b i n g the

a s s o c i a t i on o f the unc l u s t e r ed v e r t i c e s to the c l u s t e r s

”””

#c o l l e c t v e r t i c e s from c e l l s −− t ake in t o account p e r i o d i c bc

ve r t s unc = [np . array (ve r t)%1

for c e l l in t e s

for ver t in c e l l [’ v e r t i c e s ’]]

cl map = f c l u s t e r (s i n g l e (d i s t anc e . pd i s t (

ver t s unc , ’ euc l i d ean ’)) ,

eps ,

c r i t e r i o n = ’ d i s t anc e ’) − 1

v e r t s c l u s t = [[p] + l i s t (v)

39

for p , v in zip (cl map , ve r t s unc)]

return pd . DataFrame (v e r t s c l u s t) . groupby (0) . mean () . va lues ,

cl map

#compute o f f s e t s f o r each c e l l to g l o b a l v e r t e x id

compute o f f s e t = lambda t e s : [0] +

l i s t (np . cumsum ([len (c e l l [’ v e r t i c e s ’])

for c e l l in t e s]))

def c l u s t e r i n g (t e s) :

””” L i s t o f c a v i t i e s , f a c e s and edges g i ven by i d s o f

c l u s t e r e d v e r t i c e s

Arguments

t e s : t e s s e l l a t i o n

Resu l t

L i s t o f c a v i t i e s , f a c e s and edges g i ven by i d s o f

c l u s t e r e d v e r t i c e s

”””

o f f s e t = compute o f f s e t (t e s)

, cl map = c l u s t e r v e r t i c e s (t e s)

#unc lu s t e r ed c a v i t i e s and t h e i r v e r t i c e s

cavs unc = [cl map [range (l , h)]

for l , h in zip (o f f s e t ,

np . r o l l (o f f s e t , −1))] [: −1]

#unc lu s t e r ed f a c e s and t h e i r v e r t i c e s

f a c e s u n c = [np . r o l l (cl map [np . array (f a c e [’ v e r t i c e s ’]) + o] ,

40

−np . argmin (cl map [np . array (f a c e [’ v e r t i c e s ’]) + o]))

for c e l l , o in zip (tes ,

o f f s e t)

for f a c e in c e l l [’ f a c e s ’]]

#order f a c e s

f a c e s u n c = [l i s t (np . r o l l (f a c c [: : − 1] ,

−np . argmin (f a c c [: : − 1]))

i f f a c c [1] > f a c c [−1]

else f a c c)

for f a c c in f a c e s u n c]

f a c e s u n c = [l i s t (np . r o l l (f a c c [: : − 1] ,

−np . argmin (f a c c [: : − 1]))

i f f a c c [1] > f a c c [−1]

else f a c c)

for f a c c in f a c e s u n c i f len (np . unique (f a c c)) > 2]

#unc lu s t e r ed edges

edges unc = [(cl map [np . array (ve r t) + o]) . t o l i s t ()

for c e l l , o in zip (tes ,

o f f s e t)

for f a c e in c e l l [’ f a c e s ’]

for ver t in l i s t (zip (f a c e [’ v e r t i c e s ’] ,

np . r o l l (f a c e [’ v e r t i c e s ’] , 1)))]

return [np . unique ([sorted (c f e ,

key = kf)

for c f e in c f e s] ,

41

a x i s = a) for a , c f e s , k f

in zip ([None , None , 0] ,

[cavs unc , f ace s unc , edges unc] ,

[lambda x : 0 , lambda x : 0 , None])]

import cechmate as cm

from i t e r t o o l s import combinations

def f i l t (cavs ,

f a ce s ,

edges ,

cav ver t s ,

f a c v e r t s ,

e d g v e r t s) :

”””Compute f i l t r a t i o n t imes f o r c a v i t i e s

Arguments

cavs : c a v i t i e s

f a c e s : f a c e s

edges : edges

c a v v e r t s : coords o f c a v i t i e s

f a c v e r t s : coords o f c a v i t i e s

e d g v e r t s : coords o f c a v i t i e s

Resu l t

F i l t r a t i o n t imes f o r c a v i t i e s

”””

#pca to account f o r lower dimensions

ch = cm. Alpha (maxdim = 2 ,

verbose = False)

pca = PCA(2)

42

#f i l t r a t i o n t imes f o r c a v i t i e s and f a c e s

c f t i m e s = [[[[sorted ([cav [z] for z in x]) , y]

for x , y in ch . bu i ld (cv)

i f len (x) == 4]

for cav , cv in zip (cavs , c a v v e r t s)] ,

[[[sorted ([f a c e [z] for z in x]) , y]

for x , y in ch . bu i ld (pca . f i t t r a n s f o r m (fv))

i f len (x) == 3]

for face , fv in zip (f a ce s , f a c v e r t s)]]

#rep l a c e by maximal f i l t r a t i o n time per c e l l / f ace and

add lower dimensions .

c f t imes max = [[max(y

for [x , y] in c f t i m e)

i f len (c f t i m e) > 0 else 999

for c f t i m e in c f t i m e s s]

for c f t i m e s s in c f t i m e s]

#add lower dimensiona l s t r u c t u r e s to ensure i t i s

a s i m p l i c i a l complex

return [[[l i s t (z) , c f t ime max]

for c f t ime , c f t ime max in zip (c f t i m e s s ,

c f t imess max)

for x , in c f t i m e

for z in [x] + [l i s t (v)

for u in [l i s t (combinat ions (x , i))

for i in r]

for v in u]]

43

for c f t i m e s s , c f t imess max , r in zip (c f t imes ,

c f t imes max ,

[range (2 , 4) , range (2 , 3)])] \

+ [[[edge , d i s t anc e . euc l i d ean (ev [0] , ev [1]) / 2]

for edge , ev in zip (edges , e d g v e r t s)]] \

+ [[[[x] , 0]

for x in range (np .max(edges) + 1)]]

def update (∗ t e s) :

”””Update f i l t r a t i o n t imes in lower dimensiona l s t r u c t u r e s

Arguments

t e s : t e s s e l l a t i o n

Resu l t

3 arrays con ta in ing the f i l t r a t i o n t imes in c a v i t i e s ,

f a c e s and edges , r e s p e c t i v e l y

”””

fc , f f , f e , fv = f i l t (∗ t e s)

#c a v i t i e s

dim1c , dim2c , dim3c = [[a for a in f c

i f len (a [0]) == i + 2]

for i in range (3)]

#merge f a c e s wi th c a v i t i e s

dim1f , dim2f = [[a for a in f f

i f len (a [0]) == i + 2]

for i in range (2)]

dim2fc = dim2c + dim2f

dim2fc = [[[int (z) for z in b [: − 1]] , b [−1]]

44

for b in pd . DataFrame ([a [0] + [a [1]]

for a in dim2fc]) . groupby (

l i s t (range (3))) .min () . r e s e t i n d e x () . va lue s]

#merge edges wi th r e s t

dim1efc = f e + dim1f + dim1c

dim1efc = [[[int (z) for z in b [: − 1]] , b [−1]]

for b in pd . DataFrame ([a [0] + [a [1]]

for a in dim1efc]) . groupby (

l i s t (range (2))) .min () . r e s e t i n d e x () . va lue s]

return fv + dim1efc + dim2fc + dim3c

dgms = []

path cu = ’ . / s im data / c l u s t / ’

l ab s = [’ po i s ’]

nsample = 500

for lab in l ab s [0 : 1] :

with warnings . catch warn ings () :

warnings . s i m p l e f i l t e r (” i gnor e ”)

print (lab)

#Create diagram

def dgms fun (i) :

i f i %1==0:

print (i)

45

cv = p i c k l e . load (open(’ {} c lu {}{} . p ’ . format (

path cu , lab , i) , ’ rb ’))

vw = np . array (p i c k l e . load (open(’ {} c l v {}{} . p ’ . format (

path cu , lab , i) , ’ rb ’)))

vv = ([[[x for x in vw [f]]

for f in cvv]

for cvv in cv])

upd = update ([] , ∗(cv [1 :]) , [] , ∗(vv [1 :]))

s t = gudhi . SimplexTree ()

[s t . i n s e r t (∗ sp lx) for sp lx in upd]

pd . DataFrame (([[x [0]] +l i s t (x [1])

for x in s t . p e r s i s t e n c e (

h o m o l o g y c o e f f f i e l d =2)

i f x [1] [1] ! = np . i n f])) . t o c s v (

’ {}dgm{}{} . csv ’ . format (

path cu , lab , i) ,

header=None , index=False)

[dgms fun (i) for i in range (nsample)]

end time = time . time ()

execut i on t ime = round(end time − s t a r t t i m e)

execu t i on t ime in minut e s = round(execut i on t ime / 60)

print (” Execution time : ” , execut i on t ime in minute s , ” minutes ”)

46

	Abstract
	Introduction
	Notation and tools
	Spatial Statistics and Topological Data Analysis
	Tessellations

	Central limit theorems for persistent Betti numbers
	Poisson process with filtration
	Poisson process with tessellation-adapted Voronoi filtration

	Proofs
	Poisson process with filtration
	Poisson process with tessellation-adapted Voronoi filtration

	Simulations
	Persistent Betti tal
	Total persistence

	References
	Appendix

