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Abstract

Particle Markov Chain Monte Carlo (PMCMC) methods combine sequential
Monte Carlo (SMC) with Markov chain Monte Carlo (MCMC), enabling fully
Bayesian inference in complex state-space models. This thesis begins by reviewing
importance sampling, sequential importance sampling, and resampling strategies,
which form the core building blocks of a particle filter.

We then develop the theory behind the Particle Marginal Metropolis-Hastings
(PMMH) sampler, which targets the joint posterior of both model parameters and
latent states. A key insight is that PMMH uses a particle filter to provide an
unbiased estimate of the likelihood, ensuring that the correct posterior is preserved
despite the intractability of the true likelihood.

To support practical application, we introduce bayesSSM, an R package offering
streamlined implementations of PMMH and supporting routines. The package
automates proposal tuning, particle-number selection, and diagnostic reporting,
lowering the barrier to entry for applied users.

Finally, we apply these methods to the stochastic modeling of infectious disease
dynamics. After deriving stochastic SIR models, we fit a Bayesian negative-binomial
observation model to historical influenza outbreak data from a boarding school.
This analysis yields probabilistic reconstructions of the epidemic curve and credi-
ble intervals for observation noise, highlighting the advantages of stochastic over
deterministic modeling in small populations.

Overall, this work integrates literature from multiple fields and illustrates both
the theoretical foundations and practical implementation of PMCMC for state-space
modeling.
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1 Introduction

Modern statistical inference often involves formulating probabilistic statements about
latent processes governed by complex, dynamic systems. In many applied domains,
including epidemiology, finance, and ecology, these systems are naturally modeled as
state-space models (SSMs), where observed data arise from unobserved, underlying Markov
processes. Estimating latent states and parameters in such models remains computationally
challenging, especially when the system exhibits non-linearity and non-Gaussianity.

A foundational advance enabling inference in these models was the development of
sequential Monte Carlo (SMC) methods, also known as particle filters, which approximate
filtering and smoothing distributions by propagating weighted samples over time. However,
while SMC methods efficiently estimate states, they do not fully address Bayesian inference
when model parameters are unknown.

This limitation was addressed by Particle Markov chain Monte Carlo (PMCMC)
methods, introduced by Andrieu et al. [2010], which combine SMC and Markov chain
Monte Carlo (MCMC) techniques. PMCMC provides a structured framework for Bayesian
inference in SSMs, even when the likelihood function is intractable. A key feature of
PMCMC is the use of particle filters to provide unbiased estimates of the likelihood,
enabling exact Bayesian inference despite relying on approximate likelihood estimates.

The first part of this thesis provides a theoretical foundation for PMCMC, beginning
with a review of Monte Carlo (MC) methods, including importance sampling (IS) [Robert
and Casella, 2004] and sequential importance sampling (SIS) [Doucet et al., 2000]. Chal-
lenges such as particle degeneracy are discussed, and resampling techniques are introduced
to mitigate these issues. We then transition to the formal development of PMCMC
algorithm, highlighting its theoretical guarantees and practical implementation.

To bridge the gap between theory and practice, the second part of the thesis introduces
bayesSSM [Hautop, 2025], an R package designed to perform Bayesian inference in SSMs
using Particle Marginal Metropolis-Hastings (PMMH). It includes proposal tuning, adap-
tive selection of the number of particles, and diagnostic evaluation, thereby facilitating
practical use.

Finally, we apply PMCMC methods to the stochastic modeling of infectious disease
outbreaks. Using historical influenza data from a British boarding school [Communicable
Disease Surveillance Centre and Communicable Diseases (Scotland) Unit, 1978], we
demonstrate how stochastic SIR models fitted via PMCMC can be used for Bayesian
inference. This case study illustrates the practical relevance of PMCMC in small-population
epidemic modeling, where stochastic effects play a crucial role.

Overall, this thesis aims to provide a comprehensive treatment of PMCMC methods,
balancing theoretical rigor with practical utility, and contributing an open-source R package.
All code used throughout this thesis is available at: https://github.com/BjarkeHautop/
master-thesis.
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2 Monte Carlo Methods

In this chapter, we provide the theoretical foundation for Particle Markov chain Monte
Carlo (PMCMC). We follow the work of Andrieu et al. [2010], Doucet and Johansen
[2009], and Kroese et al. [2013].

Let µ be a σ-finite reference measure on the space X where each xi takes values, and
denote by µ⊗n the corresponding product measure on X n. Let x1:n = (x1, x2, . . . , xn) and
suppose we have a density πn(x1:n) (with respect to µ⊗n) given by

πn(x1:n) =
γn(x1:n)

Zn

, (2.1)

where γn(x1:n) is the unnormalized density, and the normalizing constant is given as

Zn =

∫
Xn

γn(x1:n) dµ
⊗n(x1:n).

For notational simplicity for the remainder of this chapter let X ⊆ Rd and µ be the
Lebesgue measure, in which case Zn is given by

Zn =

∫
γn(x1:n) dx1:n. (2.2)

Let X1:n ∼ πn, and draw N i.i.d. samples

X
(1)
1:n, X

(2)
1:n, . . . , X

(N)
1:n ,

and denote their realizations by

x
(1)
1:n, x

(2)
1:n, . . . , x

(N)
1:n .

We can then approximate πn(x1:n) by the empirical measure

πMC
n (x1:n) =

1

N

N∑
i=1

δ
x
(i)
1:n
(x1:n),

where δ
x
(i)
1:n

denotes the Dirac measure centered at x
(i)
1:n. We can also approximate any

marginal πn(xk) as

πMC
n (xk) =

1

N

N∑
i=1

δ
x
(i)
k
(xk).

The expectation of any function Hn : X n → R is given by

In(Hn) := E[Hn(X1:n)] =

∫
Hn(x1:n)πn(x1:n) dx1:n,
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and by the law of large numbers (LLN), we can estimate it by

IMC
n (Hn) :=

∫
Hn(x1:n) π

MC
n (x1:n) dx1:n =

1

N

N∑
i=1

Hn(x
(i)
1:n).

However, this requires that we can sample from πn, which often is not the case when it is
a complex high-dimensional distribution. A way to solve this issue is to use importance
sampling (IS).

2.1 Importance Sampling

Here we introduce an importance density qn(x1:n) which we can sample from and such
that

πn(x1:n) > 0 =⇒ qn(x1:n) > 0.

For the remainder of this chapter, we let

X1:n ∼ qn.

Suppose we draw i.i.d. samples X
(1)
1:n, . . . , X

(N)
1:n ∼ qn, with corresponding realizations

x
(1)
1:n, . . . , x

(N)
1:n . We then define the unnormalized importance weight as

wn(x1:n) :=
γn(x1:n)

qn(x1:n)
.

The normalized importance weight for the ith sample is then

W (i)
n :=

wn(x
(i)
1:n)∑N

j=1wn(x
(j)
1:n)

.

From Equation (2.1) and (2.2), we have

πn(x1:n) =
wn(x1:n)qn(x1:n)

Zn

, (2.3)

and

Zn =

∫
wn(x1:n) qn(x1:n) dx1:n. (2.4)

We then define the IS estimators of πn(x1:n) and Zn as

π̂n(x1:n) =
N∑
i=1

W (i)
n δ

x
(i)
1:n
(x1:n), (2.5)

Ẑn =
1

N

N∑
i=1

wn(x
(i)
1:n). (2.6)

Theorem 2.1 (Relative variance of Var(Ẑn)). The relative variance of the IS estimate of
the normalizing constant Zn is given by

Var(Ẑn)

Z2
n

=
1

N

(∫ π2
n(x1:n)

qn(x1:n)
dx1:n − 1

)
.
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Proof. The variance of Ẑn is

Var(Ẑn) =
1

N
Var
(
wn(X1:n)

)
=

1

N

(
E[w2

n(X1:n)]− E[wn(X1:n)]
2
)

=
1

N

(∫ γ2n(x1:n)

q2n(x1:n)
qn(x1:n) dx1:n − Z2

n

)
=

1

N

(∫ γ2n(x1:n)

qn(x1:n)
dx1:n − Z2

n

)
=

1

N

(∫ Z2
nπ

2
n(x1:n)

qn(x1:n)
dx1:n − Z2

n

)
=
Z2

n

N

(∫ π2
n(x1:n)

qn(x1:n)
dx1:n − 1

)
.

Dividing by Z2
n gives the result.

Furthermore, we can also estimate In(Hn) by

I ISn (Hn) :=

∫
Hn(x1:n)π̂(x1:n) dx1:n =

N∑
i=1

W (i)
n Hn(X

(i)
1:n) =

1
N

∑N
i=1wn(X

(i)
1:n)Hn(X

(i)
1:n)

1
N

∑N
i=1wn(X

(i)
1:n)

.

Note, that the numerator is an unbiased estimate of ZnIn(Hn), since

E

[
1

N

N∑
i=1

wn(X
(i)
1:n)Hn(X

(i)
1:n)

]
= E

[
wn(X1:n)Hn(X1:n)

]
=

∫
wn(x1:n)Hn(x1:n)q(x1:n) dx1:n

=

∫
Hn(x1:n)γn(x1:n) dx1:n

= ZnIn(Hn).

Similar calculations show that the denominator is an unbiased estimate of Zn. Thus, we
have a ratio of unbiased estimates, which is not unbiased. However, it is still consistent,
which follows by using the LLN and properties of a.s. convergence.

A natural choice for an importance density qn(x1:n) is one that minimizes the variance

of Ẑn. As shown in Theorem 2.2, this minimum variance is achieved when

qn(x1:n) = πn(x1:n).

However, this choice is not feasible in practice, as the entire motivation for using IS is
that direct sampling from πn is not possible. Nonetheless, this result indicates that the
importance density should closely resemble the target density.

We could now sample from πn(x1:n) using the above method. However, to generate a
sequence of samples for each n, each step would grow linearly in n, as generating samples
from πn+1(x1:n+1) depends on the previous samples up to time n. This makes such an
approach unfeasible in practice.
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Theorem 2.2 (Minimum Variance of IS). The variance Var[Ẑn] is minimized if

qn(x1:n) = πn(x1:n),

This can be proven by using the Lagrange multiplier and is inspired by Shimao [2018].

Proof. By independence we have,

Var[Ẑn] =
1

N
Var [wn(X1:n)] .

We then have

Var[wn(X1:n)] = E
[
γn(X1:n)

2

qn(X1:n)2

]
− Z2

n =

∫
γn(x1:n)

2

qn(x1:n)
dx1:n − Z2

n.

Minimizing Var[Ẑn] is thus equivalent to minimizing

J(qn) =

∫
γn(x1:n)

2

qn(x1:n)
dx1:n,

subject to the constraint ∫
qn(x1:n) dx1:n = 1.

We now introduce a Lagrange multiplier λ and form the Lagrangian

L(qn, λ) =

∫
γn(x1:n)

2

qn(x1:n)
dx1:n + λ

(∫
qn(x1:n) dx1:n − 1

)
.

Taking the functional derivative with respect to qn(x1:n) and using chain rule we get

δL

δqn(x1:n)
= −γn(x1:n)

2

qn(x1:n)2
+ λ = 0.

Solving for qn(x1:n) yields

qn(x1:n) =
γn(x1:n)√

λ
.

Enforcing the normalization condition we get∫
γn(x1:n)√

λ
dx1:n = 1 =⇒ Zn√

λ
= 1,

so that
√
λ = Zn. Therefore,

qn(x1:n) =
γn(x1:n)

Zn

= πn(x1:n).
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2.2 Sequential Importance Sampling

Sequential importance sampling (SIS) builds upon the basic idea of IS by exploiting a
Markov structure in the importance distribution. Instead of sampling the full trajectory
at once, SIS extends particle trajectories sequentially, updating the importance weights
recursively. This approach is particularly useful when the target distribution itself evolves
sequentially, as is common in time series or state-space models (SSMs). By aligning the
structure of the proposal and target distributions, SIS. When applying these methods in
future chapters, we will refer to this class of algorithms as particle filters.

We let our importance distribution have a Markov structure. Specifically, the impor-
tance distribution up to time step n is given by

qn(x1:n) = q1(x1)q2(x2 | x1) . . . qn(xn | x1:n−1),

and each element in the set {x1:n} we will refer to as a particle. For n ≥ 2 we define the
incremental importance weight as

αn(x1:n) :=
γn(x1:n)

γn−1(x1:n−1)qn(xn | x1:n−1)
.

The unnormalized weights can then be written recursively as

wn(x1:n) =
γn(x1:n)

qn(x1:n)

=
γn−1(x1:n−1)

qn−1(x1:n−1)

γn(x1:n)

γn−1(x1:n−1)qn(xn | x1:n−1)

= wn−1(x1:n−1) · αn(x1:n)

= w1(x1)
n∏

k=2

αk(x1:k).

(2.7)

The SIS algorithm is described in Algorithm 2.1. Assuming that sampling from the
proposal distribution and evaluating the target density take constant time O(1), the time
complexity of the algorithm can be analyzed as follows. The initialization phase samples
N particles and computes initial weights, which costs O(N). The main body consists
of two nested loops: an outer loop over time steps n = 2, . . . , T and an inner loop over
particles i = 1, . . . , N . For each particle at each time step, the algorithm samples from
the proposal distribution, computes an incremental weight, updates the particle weight,
and normalizes the weights. Each of these operations is O(1) per particle, so each time
step costs O(N), and the total cost over all time steps is O(NT ). Thus, the total time
complexity of the algorithm is O(N) +O(NT ) = O(NT ).

However, this method has a severe drawback: the relative estimated variance Var(Ẑn)/Z
2
n

increases exponentially in n even in simple examples. Example 2.3 illustrates this issue.

Example 2.3. Consider the case where X = R and let the density πn(x1:n) be given by

πn(x1:n) =
n∏

k=1

πn(xk) =
n∏

k=1

1√
2π

exp
(
−x

2
k

2

)
.

Thus, the unnormalized density γn(x1:n) is given by

γn =
n∏

k=1

exp
(
−x

2
k

2

)
,

6



Algorithm 2.1 Sequential Importance Sampling (SIS)

1: Input: Number of particles N , proposal distributions qn(xn | x1:n−1), unnormalized
target densities γn(x1:n)

2: for each particle i = 1, . . . , N do
3: Generate initial particles x

(i)
1 ∼ q1(x1)

4: Compute initial weights: w
(i)
1 ←

γ1(x
(i)
1 )

q1(x
(i)
1 )

5: Normalize: W
(i)
1 ←

w
(i)
1∑N

j=1 w
(j)
1

6: end for
7: for each time step n = 2, . . . , T do
8: for each particle i = 1, . . . , N do
9: Generate particles x

(i)
n ∼ qn(xn | x(i)1:n−1)

10: Compute the incremental importance weight:

α(i)
n ←

γn(x
(i)
1:n)

γn−1(x
(i)
1:n−1)qn(x

(i)
n | x(i)1:n−1)

11: Update the particle weight: w
(i)
n = w

(i)
n−1 · α

(i)
n

12: end for
13: Normalize the weights: W

(i)
n ← w

(i)
n∑N

j=1 w
(j)
n

14: end for
15: Output: Particle trajectories and weights:

X1:T =


x
(1)
1 x

(1)
2 . . . x

(1)
T

x
(2)
1 x

(2)
2 . . . x

(2)
T

...
...

. . .
...

x
(N)
1 x

(N)
2 . . . x

(N)
T

 , W1:T =


W

(1)
1 W

(1)
2 . . . W

(1)
T

W
(2)
1 W

(2)
2 . . . W

(2)
T

...
...

. . .
...

W
(N)
1 W

(N)
2 . . . W

(N)
T



and the normalizing constant Zn is

Zn = (2π)n/2.

Ignoring that we could easily sample from πn, we select the importance distribution qn to
sample from as

qn(x1:n) =
n∏

k=1

1√
2πσ2

exp
(
− x2k
2σ2

)
.

Using qn the goal is to estimate the normalizing constant Zn. Recall from Theorem 2.1
that the relative variance of Ẑn is given by

Var(Ẑn)

Z2
n

=
1

N

(∫ π2
n(x1:n)

qn(x1:n)
dx1:n − 1

)
.

7



In our case, this factors over the coordinates and we have∫
πn(x1:n)

2

qn(x1:n)
dx1:n =

n∏
k=1

∫
1/(2π) exp(−x2)

1/
√
2πσ2 exp(−x2/(2σ2))

dx1:k

=

[√
2πσ2

2π

∫
exp
(
−x2 + x2

2σ2

)
dx

]n
=

[√
2πσ2

2π

∫
exp
(
−
(
1− 1

σ2

)
x2
)
dx

]n
.

The integral is finite if and only if 1− 1/(2σ2) > 0, that is σ2 > 1/2. In this case, it is
equal to ∫ ∞

−∞
exp
(
−
(
1− 1

σ2

)
x2
)
dx =

√
π

1− 1/(2σ2)
.

Thus, for σ2 > 1/2 we have∫
πn(x1:n)

2

qn(x1:n)
dx1:n =

(√
2πσ2

2π

√
π

1− 1/(2σ2)

)n

=

(√
σ4

2σ2 − 1

)n

=
( σ4

2σ2 − 1

)n/2
.

Finally, we can conclude that for σ2 > 1/2 the relative variance of Ẑn is

Var[Ẑn]

Z2
n

=
1

N

[( σ4

2σ2 − 1

)n/2
− 1

]
.

Note that for any 1/2 < σ2 ≠ 1 we have that σ4/(2σ2 − 1) > 1, and thus the variance
increases exponentially with n.

For example, choosing σ2 = 1.2 then we have a reasonably good importance distribution
as qn(x1:n) ≈ πn(x1:n). However,

N Var[Ẑn]/Z
2
n ≈ (1.103)n/2,

which for n = 1000 is roughly equal to 1.9 · 1021. So we would need to use N ≈ 2 · 1023
particles to obtain a relative variance of 0.01.

2.3 Resampling

Over time, many particles receive negligible weight, leading to a situation where only a
few particles dominate the estimate. This phenomenon, known as weight degeneracy, can
degrade the performance of the estimator [Doucet et al., 2000]. The idea for resampling is
to get rid of particles with low weights with a high probability, so the focus is spent on
high-probability regions instead of carrying forward particles with very low weights. This
typically reduces the variance, see for instance Example 2.5.

The IS approximation π̂n(x1:n) of the target distribution πn(x1:n) is constructed using
weighted samples drawn from qn(x1:n). Resampling is then used, where each particle

8



X
(i)
1:n is selected with probability proportional to its normalized weight W

(i)
n . A simple

resampling strategy is multinomial resampling, where the number of offspring N
(i)
n assigned

to each particle X
(i)
1:n follows a multinomial distribution:

N (1:N)
n = (N (1)

n , . . . , N (N)
n ) ∼ Multinomial(N,W (1:N)

n ).

That is, each particle is independently resampled N times, with probabilities given by the
normalized weights W

(i)
n .

After resampling, all particles are assigned equal weight, since the resampled particles
are now an unweighted representation of the target distribution. Each selected particle
appears with frequency N

(i)
n , and thus the empirical distribution assigns equal mass to all

N retained particles. That is, the original weighted particle approximation of the target
distribution is

p̂(x) =
N∑
i=1

W (i)
n δ

X
(i)
1:n
(x),

and after resampling, the new approximation is

p̂∗(x) =
N∑
i=1

N
(i)
n

N
δ
X

(i)
1:n
(x).

Taking expectations we obtain

E
[
p̂∗(x)

]
=

N∑
i=1

E
[
N

(i)
n

N
δ
X

(i)
1:n
(x)

]
=

N∑
i=1

W (i)
n δ

X
(i)
1:n
(x) = p̂(x),

showing that the resampled particle system is unbiased.
Using the recursive structure of the unnormalized weights from Equation (2.7), a

natural way to estimate Zn is to define

Z̃1 :=
1

N

N∑
i=1

w1(x
i
1),

and for n ≥ 2 estimate Zn recursively by

Z̃n := Z̃n−1α
MC
n , (2.8)

where αMC
n is the standard MC estimate of αn.

A generic sequential importance sampling with resampling (SISR) algorithm is given in
Algorithm 2.2. The time complexity of this algorithm remains O(NT ) since the resampling
step, which involves drawing N indices according to the particle weights, is done within
the T -loop and has a time complexity of O(N).

While resampling effectively eliminates low-weight particles, it also causes many distinct
trajectories to vanish over successive iterations. In effect, resampling resets the system by
providing a reliable approximation of the current state’s marginal distribution, albeit at
the cost of losing detailed ancestral information. The deeper problem of weight degeneracy
is that trying to represent a high-dimensional distribution with a finite number of samples
will inevitably fail. An alternative would be to increase the number of particles at each
iteration; however, this approach quickly becomes infeasible due to the exponential growth
in the required number of particles [Doucet and Johansen, 2009].

Now we provide a result similar to Theorem 2.1 for the case with resampling.
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Algorithm 2.2 Sequential Importance Sampling with Resampling (SISR)

1: Input: Number of particles N , proposal distributions qn(xn | x1:n−1), unnormalized
target densities γn(x1:n)

2: for each particle i = 1, . . . , N do
3: Generate initial particles x

(i)
1 ∼ q1(x1)

4: Compute initial weights: w
(i)
1 ←

γ1(x
(i)
1 )

q1(x
(i)
1 )

5: Normalize: W
(i)
1 ←

w
(i)
1∑N

j=1 w
(j)
1

6: end for
7: for each time step n = 2, . . . , T do
8: for each particle i = 1, . . . , N do
9: Generate particles x

(i)
n ∼ qn(xn | x(i)1:n−1)

10: Compute the incremental importance weight:

α(i)
n ←

γn(x
(i)
1:n)

γn−1(x
(i)
1:n−1)qn(x

(i)
n | x(i)1:n−1)

11: Update the particle weight: w
(i)
n ← w

(i)
n−1 · α

(i)
n

12: end for
13: Normalize the weights: W

(i)
n ← w

(i)
n∑N

i=1 w
(i)
n

14: Draw N indices {a(i)}Ni=1 from {1, . . . , N} according to the probabilities {W (i)
n }

15: Set x
(i)
1:n ← x

(a(i))
1:n for all i

16: Reset weights: w
(i)
n ← 1 and W

(i)
n ← 1/N

17: end for
18: Output: Particle trajectories:

X1:T =


x
(1)
1 x

(1)
2 . . . x

(1)
T

x
(2)
1 x

(2)
2 . . . x

(2)
T

...
...

. . .
...

x
(N)
1 x

(N)
2 . . . x

(N)
T



Theorem 2.4 (Relative Asymptotic Variance with Resampling). The relative asymptotic
variance of the IS estimate of the normalizing constant Zn with resampling at every time
step is

Var(Z̃n)

Z2
n

=
1

N

[(∫
π2
1(x1)

q1(x1)
dx1 − 1

)
+

n∑
k=2

(∫
π2
k(x1:k)

πk−1(x1:k−1) qk(xk | x1:k−1)
dxk−1:k − 1

)]
.

A proof is omitted but follows from the Feynman–Kac framework; see, e.g., Chapter 9
in Moral [2004] for a proof.

Notably, comparing Theorem 2.4 with Theorem 2.1 reveals that while resampling
introduces additional variance, the resampling has a resetting property of the systems.
Thus, we get that the associated errors accumulate linearly rather than multiplicatively.
This becomes important when the dimension becomes large. We continue Example 2.3
using Theorem 2.4 to highlight this.
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Example 2.5 (Example 2.3 continued). Using Theorem 2.4 and using the derivation
done in Example 2.3 we have that it is finite for σ2 > 1/2 and the relative variance using
resampling at every time step is approximately equal to

Var(Z̃n)

Z2
n

≈ 1

N

[(∫
π2
1(x1)

q1(x1)
dx1 − 1

)
+

n∑
k=2

(∫
π2
k(x1:k)

πk−1(x1:k−1) qk(xk | x1:k−1)
dxk−1:k − 1

)]

=
n

N

[(
σ4

2σ2 − 1

1/2
)
− 1

]

which is linear in n in contrast to the exponential growth of the IS estimate of the relative
variance. If we again select σ2 = 1.2 then to obtain a relative variance of 0.01 we only
need N ≈ 104 particles instead of the N ≈ 2 · 1023 particles that were needed for the IS
estimate to obtain the same precision. That is, we obtain an improvement by 19 orders of
magnitude.

This setup favors sequential Monte Carlo (SMC) massively since the density πn(x1:n)
factorizes. A more realistic example is given in Example 3.1.

Reducing variance of Resampling

While resampling helps mitigate weight degeneracy by focusing computational effort on
high-probability regions, it introduces additional variance into the algorithm. We describe
two distinct techniques that can reduce this extra variance, thereby improving the overall
efficiency of the SISR algorithm. Notably, these approaches are complementary and can
be applied simultaneously.

We can reduce the variance introduced during resampling by changing the sampling
scheme. Several methods exist, but we will focus on stratified resampling, a method
often used in survey sampling [Kiderlen, 2022]. In stratified resampling, the interval [0, 1]
is divided into N equal strata, and one uniform random number is drawn from each
sub-interval. That is, for i = 1, . . . , N , we draw

ui ∼ Uniform

(
i− 1

N
,
i

N

)
.

Each ui is then used to select a particle based on the cumulative normalized weights. In
Douc et al. [2005] it was shown that stratified resampling always gives lower variance than
multinomial resampling when used in a particle filter. We provide a proof of this result
below.

Theorem 2.6. Let {x(i)1:n,W
(i)
n }Ni=1 be the particle set and normalized weights at time n.

Suppose we draw N resampled particles using either multinomial or stratified resampling.
Let Z̃n denote the SMC estimate of the normalizing constant, updated as

Z̃n = Z̃n−1 α
MC
n ,

where αMC
n is a Monte Carlo (MC) estimate of the incremental weight factor.

Then,

Var
(
Z̃n | {x(i)1:n,W

(i)
n }
)
stratified

≤ Var
(
Z̃n | {x(i)1:n,W

(i)
n }
)
multinomial

.
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Proof. Conditional on {x(i)1:n,W
(i)
n }, the previous estimate Z̃n−1 is fixed. Hence, it suffices

to compare Var(αMC
n ) under the two resampling schemes.

Let g
(i)
n denote the incremental weight for particle i. The update based on the resampled

particles is

αMC
n =

1

N

N∑
i=1

N (i)
n g(i)n ,

where N
(i)
n is the number of times particle i is selected.

For multinomial resampling, where(
N (1), . . . , N (N)

)
∼ Multinomial

(
N,W (1), . . . ,W (N)

)
then we have the following properties

Var(N (i)) = NW (i)(1−W (i)),

Cov(N (i), N (j)) = −NW (i)W (j), i ̸= j.

Using these properties, we compute the variance as follows.

Var(αMC
n ) = Var

(
1

N

N∑
i=1

N (i)
n g(i)n

)

=
1

N2
Var

(
N∑
i=1

N (i)
n g(i)n

)

=
1

N2

(
N∑
i=1

Var
(
N (i)

n

)(
g(i)n

)2
+
∑
i ̸=j

Cov
(
N (i)

n , N (j)
n

)
g(i)n g

(j)
n

)

=
1

N2

(
N∑
i=1

NW (i)
n

(
1−W (i)

n

)(
g(i)n

)2 −∑
i ̸=j

NW (i)
n W (j)

n g(i)n g
(j)
n

)

=
1

N

(
N∑
i=1

W (i)
n

(
g(i)n

)2 − N∑
i=1

(
W (i)

n

)2(
g(i)n

)2 −∑
i ̸=j

W (i)
n W (j)

n g(i)n g
(j)
n

)

=
1

N

 N∑
i=1

W (i)
n

(
g(i)n

)2 −( N∑
i=1

W (i)
n g(i)n

)2
 .

For stratified resampling, consider each draw as coming from a separate stratum
j = 1, . . . , N , with within-stratum weights {Wi,j}i, whereWi,j is the probability of selecting

particle i in stratum j. These satisfy
∑

iWi,j = 1 for each j, and
∑

j Wi,j = NW
(i)
n . Let

aj =
N∑
i=1

Wi,j g
(i)
n

denote the expected value of the draw from stratum j. Then

Var(αMC
n )stratified =

1

N2

N∑
j=1

(
N∑
i=1

Wi,j

(
g(i)n

)2 − a2j
)

=
1

N

N∑
i=1

W (i)
n

(
g(i)n

)2 − 1

N2

N∑
j=1

a2j .
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Comparing the two expressions gives

Var(αMC
n )multinomial − Var(αMC

n )stratified =
1

N2

N∑
j=1

a2j −
1

N

(
N∑
i=1

W (i)
n g(i)n

)2

.

Since x 7→ x2 is convex, Jensen’s inequality implies

1

N

N∑
j=1

a2j ≥

(
1

N

N∑
j=1

aj

)2

,

and thus

Var(αMC
n )multinomial − Var(αMC

n )stratified =
1

N2

N∑
j=1

a2j −
1

N

(
N∑
i=1

W (i)
n g(i)n

)2

≥ 1

N

(
1

N

N∑
j=1

aj

)2

− 1

N

(
N∑
i=1

W (i)
n g(i)n

)2

=
1

N

(
N∑
i=1

W (i)
n g(i)n

)2

− 1

N

(
N∑
i=1

W (i)
n g(i)n

)2

= 0,

where we used that

N∑
j=1

aj =
N∑
i=1

N∑
j=1

Wi,j g
(i)
n = N

N∑
i=1

W (i)
n g(i)n .

Another way to reduce the variance of the SISR algorithm is to perform the resampling
step only when many particles have low weights. We will refer to this approach as
sequential importance sampling with adaptive resampling (SISAR). A common metric
used to determine when to trigger a resampling step is the particle Effective Sample Size
(particle ESS), first introduced in Liu and Chen [1995]. The particle ESS at time n is
defined as:

ESSPF
n :=

1∑N
i=1

(
W

(i)
n

)2 .
The particle ESS takes values between 1 and N . When the particle ESS falls below a
predetermined threshold, Nτ , often chosen as Nτ = N/2, it indicates that most of the
weight is carried by only a few particles, signaling that resampling is warranted.

The motivation behind this metric is that the MC estimator of a function f , based on
a weighted sample, is

Îw =
N∑
i=1

W (i)
n f(x(i)),

and the variance of this estimator is

Var(Îw) =
N∑
i=1

(W (i)
n )2Var[f(x(i))] = σ2

N∑
i=1

(W (i)
n )2,
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where σ2 = Var[f(x(i))] is the variance of the function f . In contrast, the unweighted MC
estimator based on M independent samples is

Îu =
1

M

M∑
i=1

f(x(i)),

with variance

Var[Îu] =
σ2

M
.

By setting the variances of the weighted and unweighted estimators equal to each other,
we find that the particle ESS can be interpreted as the number of equally weighted
particles that would produce the same variance as the current weighted estimator. When
all particles have equal weights we obtain ESSPF

n = N , while when only a few particles
carry most of the weight, ESSPF

n becomes much smaller, approaching 1 in the extreme
case.

Thus, the particle ESS serves as a diagnostic for particle degeneracy, where a low value
indicates that few particles are effectively contributing to the estimate, which can lead
to high-variance estimators. This observation motivates the use of resampling to focus
computational effort on the more informative particles and maintain diversity within the
particle population.

In conclusion, the SISAR algorithm is just the SISR algorithm described in Algorithm
2.2, where the resampling is only done when the resampling condition is met. A generic
algorithm incorporating adaptive resampling is described in Algorithm 2.3. The time
complexity remains O(NT ), assuming the resampling condition can be computed in O(N),
which holds for the particle ESS with a predetermined threshold.
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Algorithm 2.3 Sequential Importance Sampling with Adaptive Resampling (SISAR)

1: Input: Number of particles N , proposal distributions qn(xn | x1:n−1), unnormalized
target densities γn(x1:n)

2: for each particle i = 1, . . . , N do
3: Generate initial particles x

(i)
1 ∼ q1(x1)

4: Compute initial weights: w
(i)
1 ←

γ1(x
(i)
1 )

q1(x
(i)
1 )

5: Normalize: W
(i)
1 ←

w
(i)
1∑N

j=1 w
(j)
1

6: end for
7: for each time step n = 2, . . . , T do
8: for each particle i = 1, . . . , N do
9: Generate particles x

(i)
n ∼ qn(xn | x(i)1:n−1)

10: Compute the incremental importance weight:

α(i)
n =

γn(x
(i)
1:n)

γn−1(x
(i)
1:n−1)qn(x

(i)
n | x(i)1:n−1)

11: Update the particle weight: w
(i)
n = w

(i)
n−1 · α

(i)
n

12: end for
13: Normalize the weights: W

(i)
n ← w

(i)
n∑N

i=1 w
(i)
n

14: if Resampling condition is met then
15: Draw N indices {a(i)}Ni=1 from {1, . . . , N} according to the probabilities {W (i)

n }
16: Set x

(i)
1:n ← x

(a(i))
1:n for all i

17: Reset weights: w
(i)
n ← 1

18: end if
19: end for
20: Output: Particle trajectories and weights:

X1:T =


x
(1)
1 x

(1)
2 . . . x

(1)
T

x
(2)
1 x

(2)
2 . . . x

(2)
T

...
...

. . .
...

x
(N)
1 x

(N)
2 . . . x

(N)
T

 , W1:T =


W

(1)
1 W

(1)
2 . . . W

(1)
T

W
(2)
1 W

(2)
2 . . . W

(2)
T

...
...

. . .
...

W
(N)
1 W

(N)
2 . . . W

(N)
T
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3 State-Space Models

This chapter builds on the work of Doucet and Johansen [2009] and Kantas et al. [2015].
Suppose we have a state-space model (SSM), also called a hidden Markov model. Specifi-
cally, we consider a discrete-time Markov process {Xn;n ≥ 0}, where each Xn takes values
in X . This process is characterized by an initial distribution

X0 ∼ µθ(x0)

and the transition density

Xn+1 | (Xn = xn) ∼ fθ(xn+1 | xn) (3.1)

for some parameter θ ∈ Θ. Our goal is to infer the latent states {Xn} (and θ if it is
unknown), given a sequence of noisy observations {Yn;n ≥ 1}, where each Yn takes values
in the space Y. The observation Yn is assumed to be conditionally independent of all
other observations and states, given the latent state Xn, and is characterized by

Yn | Xn = xn ∼ gθ(yn | xn). (3.2)

The structure of the SSM is also visualized in Figure 3.1 as a directed acyclic graph
(DAG). For simplicity, we consider only the homogeneous case, where the transition and
observation densities are time-invariant. The extension to the inhomogeneous case follows
naturally.

Let y1:T = (y1, . . . , yT ) denote the sequence of observations up to time T ≥ 1. For the
rest of this chapter let X ⊆ Rdx , Y ⊆ Rdy , and let the densities be with respect to the
corresponding Lebesgue measure.

The likelihood function pθ is given by

pθ(y1:n) =

∫
pθ(x0:n, y1:n) dx0:n,

X0 X1 X2 · · · XT

Y1 Y2 YT

µθ fθ fθ fθ fθ

gθ gθ gθ

Figure 3.1: The structure of a SSM visualized in a DAG.
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where pθ(x0:n, y1:n) is the joint density of (X0:n, Y1:n) which by Equations (3.1)-(3.2) is
given by

pθ(x0:n, y1:n) = µθ(x0)
n∏

k=1

fθ(xk | xk−1)
n∏

k=1

gθ(yk | xk).

Here, the product over the transition densities fθ(xk | xk−1) captures the evolution of
the latent states, while the product over the likelihoods gθ(yk | xk) incorporates the
information provided by the observations.

However, the likelihood is often intractable, necessitating Monte Carlo (MC) methods.
The literature splits this setup up into two problems, filtering and smoothing. We define
them as follows:

� Filtering: At each time step n, the goal is to sequentially approximate: The joint
conditional distribution of the latent states given the observations,

pθ(x0:n | y1:n),

and the marginal likelihood,
pθ(y1:n).

So, at time n = 1, we approximate pθ(x0:1 | y1) and pθ(y1); at time n = 2, we
approximate pθ(x0:2 | y1:2) and pθ(y1:2), and so on. This sequential framework aligns
directly with the setup described in the previous chapter.

� Smoothing: The objective in smoothing is to estimate the latent states by using
the entire sequence of observations y1:T . In particular, approximating the joint
conditional distribution

pθ(x0:n | y1:T ), n = 0, . . . , T,

and the marginal conditional distributions

pθ(xn | y1:T ), n = 0, . . . , T.

Because smoothing uses future observations, the resulting state estimates are gener-
ally more accurate and smoother than those obtained via filtering. This improvement
is particularly beneficial when real-time estimation is not required.

That is, the difference between filtering and smoothing is whether the inference is carried
out on-line (filtering) or off-line (smoothing). On-line inference is done sequentially when
observations become available, and off-line inference uses a fixed number of observations.

For the remainder of this chapter, we suppose that θ is known.

3.1 Filtering

We can write the density pθ(x0:n | y1:n) and the likelihood pθ(y1:n) recursively for n ≥ 1.
For notational convenience, we define y1:0 to denote the empty set. We can then write
pθ(x0:n | y1:n) as:

pθ(x0:n | y1:n) = pθ(x0:n−1 | y1:n−1)
fθ(xn | xn−1)gθ(yn | xn)

pθ(yn | y1:n−1)
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Algorithm SIS SISR SISAR

RMSE 0.87 (0.09) 0.76 (0.08) 0.79 (0.09)

Table 3.1: RMSE comparison for SIS, SISR, and SISAR, based on 10,000 MC replications
for Example 3.1. Values shown are the means with standard deviations in parentheses.

and
pθ(y1:n) = pθ(y1:n−1)pθ(yn | y1:n−1),

where the predictive likelihood pθ(yn | y1:n−1) is given by

pθ(yn | y1:n−1) =

∫
pθ(yn, xn | y1:n−1) dxn

=

∫
gθ(yn | xn) pθ(xn | y1:n−1) dxn

=

∫
gθ(yn | xn)fθ(xn | xn−1) pθ(xn−1 | y1:n−1) dxn−1:n.

Here we are in the setup discussed in Chapter 2, and we can for example use the SISAR
algorithm where the proposal distribution is chosen as the transition density, i.e. as
fθ(xn | xn−1). From now on, we refer to a particle filter that uses the transition density as
the proposal distribution as a bootstrap particle filter.

Example 3.1 (SSM with known θ). Consider the following non-linear Gaussian SSM,
where the parameter vector θ = (ϕ, σx, σy) is assumed to be known:

X0 ∼ N(0, 1),

Xt = ϕXt−1 + sin(Xt−1) + σxVt, Vt ∼ N(0, 1), t ≥ 1,

Yt = Xt + σyWt, Wt ∼ N(0, 1), t ≥ 1.

We set ϕ = 0.7, σx = 1, and σy = 1, with a time horizon of T = 50, and employ N = 1000
particles. A single realization of this SSM is illustrated in Figure 3.2.

Our objective is to compare the performance of three particle filtering methods—sequential
importance sampling (SIS), sequential importance sampling with resampling (SISR), and
sequential importance sampling with adaptive resampling (SISAR)—for estimating the
latent state Xt. All methods are implemented using the bootstrap particle filter framework.
Performance is assessed using the root mean squared error (RMSE), computed over 10,000
MC replications. For both SISR and SISAR, we use stratified resampling. The R code
used for this simulation is available in the accompanying GitHub repository.

Figure 3.3 shows the particle filter estimates of the latent state for the same realized
trajectory as in Figure 3.2. Summary statistics from the full set of 10,000 replications are
reported in Table 3.1, presented as means with standard deviations in parentheses.

Among the three methods, SIS exhibits the highest RMSE due to weight degeneracy,
where only a few particles carry most of the weight. SISR achieves the lowest RMSE,
marginally outperforming SISAR. However, SISAR offers greater computational efficiency
by avoiding resampling at every time step.
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Figure 3.2: A simulated trajectory of the data generating process (DGP) in Example
3.1. The line represents the latent state, while the points denote the corresponding
observations.

Figure 3.3: The particle filter estimates of the latent state of the DGP in Example 3.1.
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3.2 Smoothing

Forward-Backward Recursions

By doing a decomposition of the joint distribution pθ(x1:T | y1:T ) we see that conditional
on y1:T that {Xn} is a non-homogeneous Markov process

pθ(x0:T | y1:T ) = pθ(xT | y1:T )
T−1∏
n=0

pθ(xn | xn+1, y1:T )

= pθ(xT | y1:T )
T−1∏
n=0

pθ(xn | xn+1, y1:n), (3.3)

where we in the 2nd equality used the Markov property. Using Bayes’ Theorem, we can
write the marginal pθ(xn | xn+1, y1:n) as

pθ(xn | xn+1, y1:n) =
fθ(xn+1 | xn)pθ(xn | y1:n)

pθ(xn+1 | y1:n)
. (3.4)

By integrating out (x1:n−1, xn+1:T ) in Equation (3.3) we have that the marginal distribution
pθ(xn | y1:T ) is given by

pθ(xn | y1:T ) =
∫
pθ(x1:T | y1:T ) dx0:n−1 dxn+1:T

=

∫
pθ(xT | y1:T )

T−1∏
k=0

pθ(xk | xk+1, y1:k) dx0:n−1 dxn+1:T

=

∫
pθ(xT | y1:T )

T−1∏
k=0

f(xk+1 | xk)pθ(xk | y1:k)
pθ(xk+1 | y1:k)

dx0:n−1 dxn+1:T

= pθ(xn | y1:n)
∫

fθ(xn+1 | xn)
pθ(xn+1 | y1:n)

pθ(xn+1 | y1:T ) dxn+1. (3.5)

This is referred to as forward-backward smoothing, as a forward pass yields {pθ(xn |
y1:n)}Tn=0, which can then be used in a backward pass to obtain {pθ(xn | y1:T )}Tn=0.

Forward-Filtering Backward-Sampling

A common method for drawing samples from the joint smoothing distribution pθ(x1:T | y1:T )
is the Forward-Filtering Backward-Sampling with marginalization (FFBSm) method. This
method proceeds in two steps:

1. Forward filtering: The filtering distributions {pθ(xn | y1:n)}Tn=0 are approximated
using a filtering method, such as those described in Chapter 2. In this step, particles
are used to approximate the filtering distributions, with each particle x

(j)
n associated

with a weight W
(j)
n , where W

(j)
n is the normalized weight of the particle x

(j)
n . The

weight reflects how well the particle approximates the target distribution pθ(xn | y1:n).
These weights are essential for guiding the importance of each particle in subsequent
sampling steps.

2. Backward sampling:
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� First, we sample the final state XT from the distribution pθ(xT | y1:T ), which
is proportional to the forward-filtered particles at time T . Since the forward
filter gives a weighted sample {x(j)T } we sample X

(i)
T with probability W

(j)
T .

� For each time step n = T − 1, T − 2, . . . , 0, we sample the state Xn given
the sampled state Xn+1 and the observations y1:n. The sampling procedure is
based on the backward conditional distribution pθ(xn | Xn+1, y1:n), which is
proportional to the joint likelihood of the transition from xn to xn+1 and the
forward filtering distribution. More formally, we have:

pθ(xn | Xn+1, y1:n) =
fθ(Xn+1 | xn)pθ(xn | y1:n)

pθ(Xn+1 | y1:n)
,

where fθ(Xn+1 | xn) is the state transition density, and pθ(xn | y1:n) is the

forward filtering distribution for state xn. To sample X
(i)
n , we first compute

the backward weights w̃
(j)
n , which adjust the forward weights by the transition

probability:
w̃(j)

n = W (j)
n fθ(X

(j)
n+1 | x(j)n ).

� Finally, we normalize the backward weights:

W̃ (j)
n =

w̃
(j)
n∑N

j=1 w̃
(j)
n

.

Then, we sample an index k from {1, 2, . . . , N} with probability W̃
(k)
n , and set

X
(i)
n = x

(k)
n . This step ensures that the sampled trajectory is consistent with

the joint smoothing distribution pθ(x0:T | y1:T ).

In summary, the forward weights W
(j)
n capture the likelihood of each particle given the

observations up to time n, while the backward weights w̃
(j)
n adjust for the transition

probabilities between states. The pseudocode for the FFBSm algorithm is provided
in Algorithm 3.1. The time complexity of the FFBSm algorithm is O(N2T ) since the
backward sampling step involves three nested loops. Hence, the total time complexity is
O(N2T ). This is significantly slower than the algorithms in the previous chapter that had
a complexity of O(NT ).

Another approach for smoothing is the Generalised Two-Filter Formula, as discussed
in BRESLER [1986].

Example 3.2 (Example 3.1 continued). We continue from Example 3.1, using the same
model and simulation setup. In this extension, we apply smoothing using the FFBSm
algorithm. The forward filtering step is performed with the bootstrap particle filter
implemented via SISAR, incorporating stratified resampling.

Due to the computational complexity of the FFBSm algorithm—particularly the
O(N2T ) cost of the backward sampling step—the implementation was carried out in
Julia for computational efficiency. The corresponding Julia code is available in the
accompanying GitHub repository.

Figure 3.4 displays a representative trajectory of the latent state Xt, along with the
filtering estimate obtained using SISAR and the smoothed estimate from the FFBSm
algorithm.
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Algorithm 3.1 Forward-Filtering Backward-Sampling with marginalization (FFBSm)

1: Input: Observations y1:T , number of particles N , initial distribution µ(x0), state
transition density fθ(xn+1 | xn), observation density gθ(yn | xn)

2: Forward Filtering:
3: Use a forward filtering algorithm (described in Chapter 2) to obtain, for each n =

0, . . . , T , the particle approximation {x(j)n ,W
(j)
n }Nj=1 of pθ(xn | y1:n), where W (j)

n are
the normalized weights

4: for i = 1, . . . , N do
5: Backward Sampling:
6: Sample index k from {1, . . . , N} with probability W

(k)
T

7: Set X
(i)
T ← x

(k)
T

8: for n = T − 1, T − 2, . . . , 0 do
9: for j = 1, . . . , N do
10: Compute backward weights:

w̃(j)
n ← W (j)

n fθ

(
X

(i)
n+1 | x(j)n

)
11: end for
12: Normalize: W̃

(j)
n ← w̃

(j)
n∑N

j=1 w̃
(j)
n

13: Sample index k from {1, . . . , N} with probability W̃
(k)
n

14: Set X
(i)
n ← x

(k)
n

15: end for
16: end for
17: Output: N sampled trajectories {X(i)

0:T}Ni=1

Algorithm SIS SISR SISAR FFBSm

RMSE 0.87 (0.09) 0.76 (0.08) 0.79 (0.09) 0.70 (0.08)

Table 3.2: Comparison of RMSE performance for SIS, SISR, SISAR, and FFBSm algo-
rithms based on 10,000 MC replications for Example 3.2. Reported values are means with
standard deviations in parentheses.

To evaluate performance, we compute the RMSE and standard deviation over 10,000
MC iterations. Table 3.2 summarizes the results, including the previously reported filtering
methods for comparison. As expected, the smoothing method yields the best performance,
though the improvement over the filtering algorithms is modest.

22



Figure 3.4: A simulated trajectory of the SSM in Example 3.2, along with filtering and
smoothing estimates.
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4 Bayesian Inference for State-Space
Models

As in Chapter 3, we consider a state-space model (SSM) characterized by an intial
distribution µ(x0 | θ), a transition density f(xn+1 | xn, θ), and an observation density
g(yn | xn, θ). In the previous chapter, we used the shorthand notation hθ(·) for densities
depending on θ. Here, we instead adopt the more explicit notation h(· | θ), which aligns
better with Bayesian conventions. Let

y1:T = (y1, . . . , yT )

denote the sequence of observations up to time T ≥ 1. We assume that X ⊆ Rdx and
Y ⊆ Rdy , and that all densities are defined with respect to the corresponding Lebesgue
measures. Furthermore, we assume that the parameter θ admits a density with respect to
the Lebesgue measure.

In many state-space models, both the parameters θ and the latent states x0:T are
unknown and must be inferred simultaneously. In the Bayesian setting, inference is carried
out on the joint posterior distribution

p(x0:T , θ | y1:T ) =
p(y1:T | x0:T , θ)p(x0:T , θ)

p(y1:T )

=
p(y1:T | x0:T , θ)π(θ)p(x0:T | θ)

p(y1:T )

∝ π(θ)p(y1:T | x0:T , θ)p(x0:T | θ), (4.1)

where π(θ) denotes the prior on θ, and

p(y1:T ) =

∫ ∫
π(θ)p(y1:T | x0:T , θ)p(x0:T | θ) dx0:T dθ

is the marginal likelihood, which is intractable in general and treated as a normalizing
constant. Using the Markov structure of the model, the full posterior can also be expressed
as

p(x0:T , θ | y1:T ) ∝ π(θ)µ(x0 | θ)
T−1∏
n=0

f(xn+1 | xn, θ)
T∏

n=1

g(yn | xn, θ).

When the latent states are not of primary interest, they can be integrated out to
obtain the marginal posterior for the parameters:

p(θ | y1:T ) =
∫
p(x0:T , θ | y1:T ) dx0:T

∝ π(θ)p(y1:T | θ), (4.2)
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where the marginal likelihood is

p(y1:T | θ) =
∫
p(x0:T , y1:T | θ) dx0:T .

Since neither Equation (4.1) nor (4.2) is generally tractable, Markov chain Monte Carlo
(MCMC) methods are widely used to approximate the posterior distributions. However,
standard techniques such as one-variable-at-a-time Gibbs sampling often perform poorly
for non-linear, non-Gaussian SSMs [Kantas et al., 2015].

4.1 Particle Marginal Metropolis-Hastings (PMMH)

A Marginal Metropolis–Hastings (MMH) sampler would sample from the joint posterior
p(x0:T , θ | y1:T ) by using the proposal density

q
(
(x′0:T , θ

′) | x0:T , θ
)
= q(θ′ | θ)p(x′0:T | y1:T , θ′), (4.3)

where q(θ′ | θ) is a proposal density to obtain a candidate parameter θ′ from θ, a candidate
latent trajectory x′0:T given y1:T and θ′. The acceptance probability is given by

min

{
1,

p(y1:T | θ′)π(θ′)q(θ | θ′)
p(y1:T | θ)π(θ)q(θ′ | θ)

}
. (4.4)

However, we can generally neither sample from p(x′0:T | y1:T , θ′) nor compute the likelihood
terms p(y1:T | θ′) and p(y1:T | θ) from the acceptance probability. Thus, an implementation
of MMH is generally impossible.

A Particle Marginal Metropolis-Hastings (PMMH) sampler is an approximation of the
MMH sampler where particle methods are used to approximate these intractable terms.
The pseudocode for the algorithm is given in Algorithm 4.1. We will now show that the
PMMH algorithm has the target density

ψ(x0:T , θ) ∝ π(θ)p(x0:T | θ)p(y1:T | x0:T , θ)

stationary distribution. In the following Theorem and proof we let z denote the auxiliary
variables used to estimate the likelihood, which in the case of a particle filter is the
particles and weights. The theorem below, inspired by Theorem 2 in Andrieu et al. [2010],
which states a similar result, demonstrates that the PMMH algorithm, despite using an
unbiased likelihood estimator instead of the true likelihood, preserves the correct joint
posterior distribution as its stationary distribution under mild assumptions.

Theorem 4.1 (PMMH Correctness). Suppose that the ideal marginal Metropolis-Hastings
(MMH) sampler targeting the joint posterior

ψ(x0:T , θ) ∝ π(θ)p(x0:T | θ)p(y1:T | x0:T , θ)

has stationary distribution ψ(x0:T , θ). Assume that for each pair (x0:T , θ) there exists a
non-negative, unbiased estimator p̂(y1:T | x0:T , θ, z) of p(y1:T | x0:T , θ), where z denotes the
auxiliary variables generated from a density h(z | x0:T , θ) whose support is independent of
(x0:T , θ), i.e.,

supp
(
h(· | x0:T , θ)

)
= supp

(
h(· | x′0:T , θ′)

)
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for all (x0:T , θ) and (x′0:T , θ
′). Define the extended target on the augmented space (x0:T , θ, z)

by
ψ̃(x0:T , θ, z) ∝ π(θ)p(x0:T | θ)p̂(y1:T | x0:T , θ, z)h(z | x0:T , θ).

Then, the PMMH algorithm that uses the proposal density

q
(
(x0:T , θ, z), (x

′
0:T , θ

′, z′)
)
= q(θ′ | θ)h(z′ | x′0:T , θ′)

hence accepts a move from (x0:T , θ, z) to (x′0:T , θ
′, z′) with probability

α
(
(x0:T , θ, z), (x

′
0:T , θ

′, z′)
)

= min

{
1,

π(θ′) p(x′0:T | θ′) p̂(y1:T | x′0:T , θ, z′)h(z′ | x′0:T , θ′) q(θ | θ′)
π(θ) p(x0:T | θ) p̂(y1:T | x0:T , θ, z)h(z | x0:T , θ) q(θ′ | θ)

}
,

and has the extended target ψ̃(x0:T , θ, z) as its stationary distribution. Consequently, its
marginal distribution on (x0:T , θ) is ψ(x0:T , θ).

Proof. First, note that integrating the extended target over the auxiliary variables z yields∫
ψ̃(x0:T , θ, z) dz ∝ π(θ)p(x0:T | θ)

∫
p̂(y1:T | x0:T , θ, z)h(z | x0:T , θ) dz

= π(θ)p(x0:T | θ)p(y1:T | x0:T , θ),

where the equality follows from the unbiasedness of p̂(y1:T | x0:T , θ, z). Thus, the marginal
target on (x0:T , θ) is

ψ(x0:T , θ) ∝ π(θ)p(x0:T | θ)p(y1:T | x0:T , θ).

Next, we show that the Markov chain on the extended space (x0:T , θ, z) satisfies

detailed balance with respect to ψ̃(x0:T , θ, z). The PMMH algorithm proposes a move
from (x0:T , θ, z) to (x′0:T , θ

′, z′) using the proposal density

q
(
(x0:T , θ, z), (x

′
0:T , θ

′, z′)
)
= q(θ′ | θ)h(z′ | x′0:T , θ′).

Define the ratio

r :=
π(θ′)p(x′0:T | θ′)p̂(y1:T | x′0:T , θ, z′)h(z′ | x′0:T , θ′)q(θ | θ′)
π(θ)p(x0:T | θ)p̂(y1:T | x0:T , θ, z)h(z | x0:T , θ)q(θ′ | θ)

,

so that the acceptance probability is

α
(
(x0:T , θ, z), (x

′
0:T , θ

′, z′)
)
= min{1, r}.

By symmetry, the acceptance probability for the reverse move is

α
(
(x′0:T , θ

′, z′), (x0:T , θ, z)
)
= min{1, r−1}.

We wish to show the detailed balance equation is satisfied, that is for all (x0:T , θ, z) and
(θ′, x′0:T , z

′) we have

ψ̃(x0:T , θ, z)q
(
(x0:T , θ, z), (x

′
0:T , θ

′, z′)
)
α
(
(x0:T , θ, z), (x

′
0:T , θ

′, z′)
)

= ψ̃(x′0:T , θ
′, z′)q

(
(x′0:T , θ

′, z′), (x0:T , θ, z)
)
α
(
(x′0:T , θ

′, z′), (x0:T , θ, z)
)
.

26



Without loss of generality, assume that r ≤ 1. Then the product

ψ̃(x0:T , θ, z)q
(
(x0:T , θ, z), (x

′
0:T , θ

′, z′)
)
α
(
(x0:T , θ, z), (x

′
0:T , θ

′, z′)
)

can be written as (up to the normalizing constant)

π(θ) p(x0:T | θ)p̂(y1:T | x0:T , θ, z)h(z | x0:T , θ)q(θ′ | θ)h(z′ | x′0:T , θ′)r
= π(θ′)p(x′0:T | θ′)p̂(y1:T | x′0:T , θ, z′)h(z′ | x′0:T , θ′)q(θ | θ′).

Similarly, the reverse move yields (up to the normalizing constant)

ψ̃(x′0:T , θ
′, z′)q

(
(x′0:T , θ

′, z′), (x0:T , θ, z)
)
α
(
(x′0:T , θ

′, z′), (x0:T , θ, z)
)

= π(θ′)p(x′0:T | θ′)p̂(y1:T | x′0:T , θ, z′)h(z′ | x′0:T , θ′)q(θ | θ′)h(z | x0:T , θ).

Thus, the two sides are equal, and the detailed balance equation is satisfied.
Since the detailed balance equation holds, the extended Markov chain has stationary

distribution ψ̃(x0:T , θ, z) [Bhattacharya and Waymire, 2009]. Consequently, its marginal
over (x0:T , θ) is ψ(x0:T , θ), which completes the proof.

Note that Theorem 4.1 established that any unbiased estimator of the likelihood, under
the given assumptions, ensures that

ψ(x0:T , θ) = p(θ | y1:T )

is a stationary distribution. In particular, when using a particle filter to estimate the
likelihood, the resulting Markov chain maintains ψ(x0:T , θ) as a stationary distribution
for any number of particles N .

The proposal density q(θ′ | θ) is often chosen as a random walk, that is θ′

q(θ′ | θ) ∼ N(θ, P̂),

where P̂ is the estimated posterior covariance based on a pilot run [Dahlin and Schön,
2019].

Recall, that the particle filter algorithms discussed in Chapter 2 had time complexity
O(NT ), and thus this algorithm has time complexity O(MNT ), where M is the number
of MCMC iterations. Even though any choice of N leads to ψ(x0:T , θ) being a stationary
distribution, the parameter N directly impacts the variance of the likelihood estimator
p̂(y1:T | θ). Increasing N reduces this variance, leading to a more stable acceptance
probability. In practice, N is typically determined via pilot runs that monitor the variance
of the log-likelihood estimate. The common guideline based on simulation studies is
to choose N so that this variance is approximately around 1-1.7 when evaluated at the
posterior mean of θ [Pitt et al., 2012, Dahlin and Schön, 2019].

The number of MCMC iterations M determines the overall length of the Markov
chain and hence the quality of the posterior approximation. A larger M facilitates a
more thorough exploration of the posterior distribution, allowing for greater precision
in the resulting parameter estimates after discarding an appropriate burn-in period. In
practice, we often run several independent chains and use convergence diagnostics such as
the potential scale reduction statistic, R̂, and the effective sample size of each parameter,
see also Appendix A.
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Algorithm 4.1 Particle Marginal Metropolis-Hastings (PMMH)

1: Input: Observation sequence y1:T ; number of MCMC iterations M ; number of
particles N ; prior density π(θ); proposal density q(θ′ | θ); and initial parameter value
θ(0).

2: Initialization: Run a particle filter with parameter θ(0) to obtain a likelihood estimate
p̂(y1:T | θ(0), x(0)0:T ) and a latent state sample x

(0)
0:T .

3: for m = 1, . . . ,M do
4: Propose a new parameter: θ′ ∼ q(θ′ | θ(m−1)).
5: Run a particle filter with θ′ to obtain the likelihood estimate p̂(y1:T | θ′, x′0:T ) and

a latent state sample x′0:T .
6: Compute the acceptance probability

α← min

{
1,

π(θ′) p̂(y1:T | θ′, x′0:T ) q(θ(m−1) | θ′)
π(θ(m−1)) p̂(y1:T | θ(m−1), x

(m−1)
0:T ) q(θ′ | θ(m−1))

}
.

7: With probability α, set

θ(m) ← θ′, x
(m)
0:T ← x′0:T , p̂(y1:T | θ(m), x

(m)
0:T )← p̂(y1:T | θ′, x′0:T ).

8: Otherwise, set

θ(m) ← θ(m−1), x
(m)
0:T ← x

(m−1)
0:T , p̂(y1:T | θ(m), x

(m)
0:T )← p̂(y1:T | θ(m−1), x

(m−1)
0:T ).

9: end for
10: Return: The chain {θ(m), x

(m)
0:T }Mm=0.

We will refer throughout to the standard settings for PMMH as using the settings
described in Table 4.1. The pilot proposal distribution used is

qpilot(θ
′ | θ) ∼ N

(
θ, (0.1)2 · I

)
,

where I is the identity matrix. From the pilot run, we estimate both the posterior
covariance matrix, P̂, and the posterior mean, θ̂. Next, using the estimated posterior
mean, we calculate an estimate of the variance of the log-likelihood, denoted by V̂ar(ℓ),
by performing 100 repetitions with Npilot = 100 particles each time. Finally, we set

N = max
(
Npilot · V̂ar(ℓ), 50

)
,

so that the log-likelihood has approximately unit variance at the estimated posterior while
ensuring that N is at least 50. A pilot run is done for each chain. See Appendix C for
further implementation details.

Example 4.2 (SSM with unknown θ). We consider the same model from Example 3.1
and Example 3.2, that is we have θ = (ϕ, σx, σy) and we have the following SSM

X0 ∼ N(0, 1),

Xt = ϕXt−1 + sin(Xt−1) + σxVt, Vt ∼ N(0, 1), t ≥ 1,

Yt = Xt + σyWt, Wt ∼ N(0, 1), t ≥ 1.
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Parameter Value Description

algorithm SISAR Algorithm used
resample fn Stratified Resampling method
pilot proposal sd 0.5 Initial proposal standard deviation
pilot n 100 Number of particles in pilot run
pilot m 2,000 Number of MCMC iterations in pilot run
pilot burn in 500 Burn-in amount in pilot run
pilot target var 1 Target variance of the log-likelihood at posterior mean
pilot reps 100 Repetitions for estimating variance of the log-likelihood
num chains 4 Number of MCMC chains
m 40,000 Number of MCMC iterations
burn in 500 Burn-in amount

Table 4.1: Standard PMMH settings.

We generate data with the true parameters ϕ = 0.7, σx = 1, σy = 1 over T = 50 time
steps, but treat θ as unknown. We place weakly informative priors

ϕ ∼ Uniform(−1, 1),
σx ∼ Normal+(0, 1),

σy ∼ Normal+(0, 1).

All assumptions of Theorem 4.1 are satisfied, since the bootstrap particle filter provides a
non-negative, unbiased estimator of the likelihood whose auxiliary variables (particles and
weights) have support independent of (x0:T , θ), and all transition and observation densities
have full support regardless of θ. We perform a prior predictive check, in which data
are generated from the model using parameters drawn from the prior distribution. This
allows us to assess whether the prior places reasonable mass on data that resemble the
observed data. In Figure 4.1, we show data simulated from the data generating process
(DGP) using the true parameter values θ = (0.7, 1, 1), alongside 100 datasets simulated
from the prior.

We run the PMMH algorithm using the standard settings given in Table 4.1, only
changing the number of MCMC samples to 50,000 to ensure reliable inference. The R

code for this analysis is available in the accompanying GitHub repository.
To ensure that the posterior distribution produces data consistent with the observed

data, we perform a posterior predictive check, shown in Figure 4.2. The results appear
reasonable, with the posterior values aligning well with the observed data.

We assess the reliability of the inference by computing the split-R̂ statistic and the
MCMC Effective Sample Size (MCMC ESS) (see Appendix A for details). As summarized

in Table 4.2, the MCMC ESS are above the recommended minimum of 400, and all split-R̂
values are below the threshold of 1.01. These diagnostics confirm that the MCMC samples
are suitable for reliable inference. The estimated posterior distribution for ϕ is shown
in Figure 4.3. The posterior predictive check showed that the posterior distribution can
generate data consistent with the observed data, even though the posterior mean of σy is
0.37, which is far from the true value of 1.0. This suggests potential identifiability issues
in the model.

The estimated posterior distributions for σx and σy are available in Appendix D
(Figures D.1 and D.2, respectively).
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Figure 4.1: The bold dark blue line represents a simulated trajectory of the SSM in
Example 4.2, while the light blue lines show 100 outbreaks simulated from the prior
distribution.

Figure 4.2: The bold dark blue line represents a simulated trajectory of the SSM in
Example 4.2, while the light blue lines show 100 outbreaks simulated from the posterior
distribution.
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Figure 4.3: Posterior density estimate for ϕ in Example 4.2. The black dot indicates the
posterior mean, and the horizontal line represents the 95% credible interval.

Parameter True Value ESS split-R̂ Mean 95% Credible Interval

ϕ 0.7 5151 1.00 0.66 [0.49, 0.81]
σx 1 2565 1.00 1.28 [0.90, 1.62]
σy 1 432 1.00 0.37 [0.05, 0.80]

Table 4.2: Diagnostics, mean, and 95% credible interval for parameters.

The RMSE of the latent state based on this one simulated dataset is 0.80, only slightly
worse than the result of the filtering and smoothing algorithms from Table 3.2, where the
parameters were known.

4.2 Comparison with Alternative Methods for

Intractable Likelihoods

In many practical settings, the likelihood function p(y | θ) is analytically or computationally
intractable. This thesis has focused on performing Bayesian inference by using an unbiased
estimator of the likelihood, particularly through particle filters in SSMs. Here we briefly
mention some alternative methods for Bayesian inference with intractable likelihoods.

Approximate Bayesian Computation (ABC)

ABC methods avoid explicit likelihood evaluation by comparing observed data to simulated
data through summary statistics. The simplest rejection ABC algorithm proceeds as:
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1. Sample θ ∼ π(θ).

2. Simulate x ∼ p(x | θ).

3. Accept θ if ρ(S(x), S(y)) < ϵ,

where S(·) is a summary statistic, ρ is a discrepancy measure (not necessarily a metric),
and ϵ > 0 is a tolerance. The resulting approximate posterior is

πϵ(θ | y) ∝ π(θ)

∫
I
(
ρ(S(x), S(y)) < ϵ

)
p(x | θ) dx.

More generally, the indicator function I(· < ϵ) can be replaced by a smoothing kernel Kϵ,
giving

πϵ(θ | y) ∝ π(θ)

∫
Kϵ

(
ρ(S(x), S(y))

)
p(x | θ) dx,

which can reduce Monte Carlo (MC) variance.
As ϵ→ 0, and if S is sufficient for θ, πϵ(θ | y) converges to the true posterior. However,

for fixed ϵ > 0 or non-sufficient S, ABC provides only an approximate posterior due
to information loss and tolerance bias [Beaumont, 2010, Marin et al., 2012, Sunn̊aker
et al., 2013]. Thus, the performance of ABC depends strongly on the choice of summary
statistics S, discrepancy ρ, and tolerance ϵ.

Synthetic Likelihood

The synthetic likelihood approach, introduced by Wood [2010], assumes that the summary
statistics S(x) | θ are approximately multivariate Gaussian

S(x) | θ ∼ N (µθ,Σθ).

The synthetic likelihood at parameter θ is estimated by simulating m independent datasets
x(1), . . . , x(m) ∼ p(x | θ), computing the sample mean µ̂θ and covariance Σ̂θ of the
summaries, and evaluating the Gaussian density at the observed summaries S(y):

LSL(θ) ≈ N (S(y); µ̂θ, Σ̂θ).

This plug-in estimator of the synthetic likelihood can then be used within e.g., a Metropo-
lis–Hastings framework to perform Bayesian inference.

The synthetic likelihood approach is generally more stable and easier to tune than
ABC because it avoids choosing a discrepancy metric and tolerance. However, it relies
critically on the Gaussianity assumption of the summaries, which may not hold in all
models, potentially leading to biased or overconfident inference [Wood, 2010, Price et al.,
2018]. Furthermore, the computational cost per likelihood evaluation is higher than ABC,
since each θ requires simulating m datasets.

Summary

In summary, Particle Markov chain Monte Carlo (PMCMC) provides the most principled
and exact Bayesian inference when computational resources allow, as it uses unbiased
estimates of the likelihood within a MCMC scheme. In contrast, ABC and synthetic
likelihood methods provide approximate posteriors but are generally computationally
cheaper, as they avoid explicit likelihood estimation. ABC relies heavily on summary
statistics and tolerance choices, while synthetic likelihood trades this for an approximate
Gaussian likelihood assumption and the cost of repeated simulations.
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5 Software implementation

5.1 Overview and Motivation

The R package bayesSSM [Hautop, 2025], developed as part of this thesis, provides a
lightweight and user-friendly toolkit for performing Bayesian inference in state-space
models using particle methods. The most widely used R packages for Bayesian inference
in state-space models are pomp [King et al., 2016] and NIMBLE [de Valpine et al., 2017].
These are generally considered the primary tools in the field [Endo et al., 2019]. However,
their extensive feature sets and high degree of flexibility can pose a steep learning curve
for new users.

In contrast, bayesSSM offers a streamlined, accessible interface, enabling users to get
started quickly with minimal overhead. bayesSSM automatically tunes the number of
particles and the proposal distribution using a pilot run as described in Chapter 4. As
opposed to this, pomp does not support automatic tuning for the number of particles, and
NIMBLE only provides an experimental feature for tuning the number of particles. It is
important to note, however, that bayesSSM is implemented purely in R, whereas both
pomp and NIMBLE rely on C++ for core computations. As a result, bayesSSM is generally
slower than the alternatives.

All functionality in the package was implemented from scratch using what was described
in Chapter 3 and Chapter 4. Every code example using a particle filter or Particle Marginal
Metropolis-Hastings (PMMH) was done using bayesSSM. The package adheres to best
practices outlined in Wickham and Bryan [2025], including continuous integration and
deployment, ensuring a robust development cycle.

5.2 Core Functionality

The package exports several functions, with the main one being pmmh(). The function
pmmh() implements the PMMH algorithm. This function automatically tunes the number
of particles and proposal covariance, as described in the previous chapter. Its signature is:

1 pmmh(

2 y,

3 m,

4 init_fn ,

5 transition_fn ,

6 log_likelihood_fn ,

7 log_priors ,

8 pilot_init_params ,

9 burn_in ,

10 ... # Additional optional arguments
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11 )

Listing 5.1: Function signature of pmmh().

We briefly describe the required arguments and refer to the package documentation for
more details.

y A numeric vector or matrix of observations.

m The total number of Markov chain Monte Carlo (MCMC) iterations per chain.

init fn Function to initialize particle states. Must accept num particles and return a
vector or matrix of initial states. Model parameters can be passed as additional
named arguments.

transition fn State–transition function. Must accept the current particles and re-
turn propagated particles. Model parameters can be passed as additional named
arguments. The function can optionally depend on time by including a time step
argument t.

log likelihood fn A function that computes the log-likelihoods for the particles. Must
accept y (current observation), particles, and return a vector of log-likelihoods.
Model parameters can be passed as additional named arguments. The function can
optionally depend on time by including a time step argument t.

log priors A named list of functions mapping each parameter to its log-prior.

pilot init params A list of named vectors, one per chain, specifying initial parameter
values for the pilot chains.

burn in The number of samples to discard as burn-in.

5.3 Example usage

We now provide a minimal example for performing Bayesian Inference for the following
state-space model (SSM)

X0 ∼ N(0, 1),

Xt = ϕXt−1 + sin(Xt−1) + σxVt, Vt ∼ N(0, 1), t ≥ 1,

Yt = cos(Xt) + σyWt, Wt ∼ N(0, 1), t ≥ 1,

with the following priors

ϕ ∼ Uniform(0, 1),

σx ∼ Exp(1),

σy ∼ Exp(1).

This can be accomplished with the pmmh() function, as demonstrated in Listing 5.2.
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1 library(bayesSSM)

2 set.seed (1405)

3

4 init_fn <- function(num_particles) {

5 rnorm(num_particles , mean = 0, sd = 1)

6 }

7 transition_fn <- function(particles , phi , sigma_x) {

8 phi * particles + sin(particles)

9 + rnorm(length(particles), 0, sigma_x)

10 }

11 log_likelihood_fn <- function(y, particles , sigma_y) {

12 dnorm(y, mean = cos(particles), sd = sigma_y , log = TRUE)

13 }

14

15 phi_prior <- function(phi) {

16 dunif(phi , 0, 1, log = TRUE)

17 }

18 sigma_x_prior <- function(sigma_x) {

19 dexp(sigma_x , 1, log = TRUE)

20 }

21 sigma_y_prior <- function(sigma_y) {

22 dexp(sigma_y , 1, log = TRUE)

23 }

24

25 log_priors <- list(

26 phi = phi_prior ,

27 sigma_x = sigma_x_prior ,

28 sigma_y = sigma_y_prior

29 )

30

31 pilot_init_params <- list(

32 c(phi = 0.8, sigma_x = 1, sigma_y = 0.5),

33 c(phi = 0.4, sigma_x = 0.5, sigma_y = 1.0)

34 )

35

36 y <- rnorm (50) # Dummy data

37

38 pmmh_result <- pmmh(

39 y = y,

40 m = 1000,

41 init_fn = init_fn ,

42 transition_fn = transition_fn ,

43 log_likelihood_fn = log_likelihood_fn ,

44 log_priors = log_priors ,

45 pilot_init_params = pilot_init_params ,

46 burn_in = 100,

47 num_chains = 2

48 )

Listing 5.2: R code for PMMH setup.

35



The pmmh() function automatically tunes the number of particles via a pilot run as
described in Chapter 4. The output of running Listing 5.2 is shown in Listing 5.3. It
includes progress messages, parameter summaries, and warnings if applicable.

1 Running chain 1...

2 Running pilot chain for tuning...

3 Using 50 particles for PMMH:

4 Running Particle MCMC chain with tuned settings...

5 Running chain 2...

6 Running pilot chain for tuning...

7 Using 50 particles for PMMH:

8 Running Particle MCMC chain with tuned settings...

9

10 PMMH Results Summary:

11 Parameter Mean SD Median 2.5% 97.5% ESS Rhat

12 phi 0.54 0.30 0.57 0.03 0.98 82 1.001

13 sigma_x 2.10 0.67 1.94 1.31 4.08 48 1.026

14 sigma_y 0.70 0.12 0.71 0.48 0.95 65 1.053

15

16 Warning messages:

17 1: In pmmh(y = y, m = 1000, init_fn = init_fn , transition_fn =

transition_fn , :

18 Some ESS values are below 400, indicating poor mixing.

19 Consider running the chains for more iterations.

20 2: In pmmh(y = y, m = 1000, init_fn = init_fn , transition_fn =

transition_fn , :

21 Some Rhat values are above 1.01 , indicating that the chains have

not converged.

22 Consider running the chains for more iterations and/or increase

burn_in.

Listing 5.3: Output of running Listing 5.2.
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6 Stochastic Modeling of Disease Out-
breaks

In this chapter, we introduce the theoretical framework for stochastic modeling of disease
outbreaks, following the approach in Andersson and Britton [2000].

Most of the literature on epidemic modeling describes the system using either ordinary
differential equations (ODEs) (e.g., Chen et al. [2020], Giraldo and Palacio [2008], Carcione
et al. [2020]) or stochastic differential equations (SDEs) (e.g., Dureau et al. [2013], Liu
et al. [2020]). These models treat the states as continuous and assume that the system
evolves according to smooth dynamics, which are deterministic in the case of ODEs, and
include continuous stochastic perturbations in the case of SDEs.

In contrast, our approach models the epidemic process as a series of events, where the
time between events (such as infections or recoveries) is exponentially distributed. By
performing inference on the rate parameters using Monte Carlo (MC) simulations, we
capture the inherent randomness in the transmission process more accurately, especially
in scenarios involving small populations or the early stages of an outbreak.

Given the often limited number of observations and the wealth of prior knowledge
about similar diseases, a Bayesian framework is particularly well-suited for modeling
disease outbreaks.

6.1 SIR Model

We consider a closed population of size N , where births, natural deaths, and migrations
are neglected. Initially, every individual (who is not infected) is assumed to be susceptible.
Once an individual becomes infected, they enter an infectious state during which they may
transmit the disease. After the infectious period, the individual recovers (or is removed)
and no longer contributes to disease transmission. Hence, this model comprises three
compartments and is commonly referred to as a Susceptible-Infectious-Recovered (SIR)
model.

At time t = 0, suppose there are i infectious individuals (who have just been infected),
s susceptible individuals, and r = 0 recovered. We model the duration of the infectious
period as a non-negative random variable I with finite mean µ and variance σ2. We
assume that the infectious periods are i.i.d. across individuals.

Suppose that during an individual’s infectious period, contacts with any given member
of the population occur according to a time-homogeneous Poisson process with rate λ/N ,
where λ > 0. Thus, each infectious individual makes contact with any other individual at
an overall rate of λ, independent of the population size. When a susceptible individual
is contacted, they become infected instantaneously and subsequently follow the same
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infectious process. The epidemic terminates once there are no infectious individuals
remaining.

Some key quantities of interest are:

� The final size of the epidemic, Z, is defined as the total number of individuals that
eventually become infected.

� The effective reproduction number. We define the basic reproduction number by

R0 = λµ,

which represents the expected number of secondary infections produced by a single
infectious individual in an entirely susceptible population. The effective reproduction
number is then defined as

Re = R0
s

N
,

which represents the expected number of secondary infections produced by an
infectious individual when only s individuals are susceptible. An epidemic is likely
to occur if Re > 1, whereas it is likely to die out quickly if Re < 1.

Since the population size N is fixed it is sufficient to only track the number of susceptible
and the number of infected. Let S(t) denote the number of susceptible individuals, I(t)
denote the number of infectious individuals, and R(t) the number of recovered individuals
at time t ≥ 0. Since population size N is assumed fixed, we have

N = S(t) + I(t) +R(t),

and it is sufficient to only keep track of S(t) and I(t) through time.

Markov Process

To integrate this model into our framework for state-space models (SSMs), we require the
process

{
(
S(t), I(t)

)
: t ≥ 0}

to be a Markov process. For it to be a Markov process the infection and removal events
must be memoryless—a property unique to the exponential distribution among continuous
distributions. The infection event is inherently memoryless, as it corresponds to the time
until the next event in a Poisson process. For the removal process, we further assume that

I ∼ Exp(γ),

which implies that the mean infectious period is µ = 1/γ and, consequently, the basic
reproduction number becomes

R0 =
λ

γ
.

Under these assumptions, the Markov process
(
S(t), I(t)

)
is characterized by the

following transition rates:
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� Infection Event: The transition

(s, i)→ (s− 1, i+ 1)

occurs at rate
λ

N
s i,

for s > 0 and i > 0.

� Removal Event: The transition

(s, i)→ (s, i− 1)

occurs at rate
γ i,

for i > 0.

Thus, the time until the next event (of any type) follows an exponential distribution with
rate

λ

N
si+ γi.

Conditional on an event occurring, the probability that it is an infection event is given by

λ/N · si
λ/N · si+ γi

,

with the complementary probability corresponding to a removal event.

Partial Observations

In practice, epidemic data are often collected only in aggregated form; for example,
we might only know the initial state, (I(0), S(0)) and either the number of infectious
individuals, I(t), at each observation time t = 1, . . . , T for some T ≥ 1, or the daily
number of new infections. Since individual infection and recovery events are not recorded,
the corresponding number of susceptible individuals, S(t), remains unobserved and is
treated as a latent variable.

Noisy Measurements

In many real-world scenarios, the observed data are affected by measurement errors. The
true number of infectious individuals, I(t), might be misrepresented due to factors such as
limited testing capacity or diagnostic inaccuracies, leading to observed counts Y (t) that
differ from the true values.

To capture this uncertainty, the observation process can be modeled probabilistically.
One common approach is to assume a Poisson measurement model:

Y (t) | I(t), r ∼ Poisson
(
rI(t)

)
, t = 1, . . . , T,

where r > 0 is a scaling parameter that adjusts for under- or over-reporting.
Alternatively, to allow for possible over-dispersion, a Negative Binomial model may be

more appropriate:

Y (t) | I(t), ϕ, r ∼ NegBinomial
(
ϕ, rI(t)

)
, t = 1, . . . , T,

where ϕ > 0 is the dispersion parameter, r > 0 is the scaling parameter, and the mean is
given by rI(t).

39



6.2 Limitations of Standard Markov Chain Monte

Carlo

If one wanted to use standard Markov chain Monte Carlo (MCMC) tools in this model the
exact transition probabilities of the underlying continuous-time Markov process are needed.
These can be obtained through matrix exponentiation. Let Q denote the generator matrix
of the Markov process, where each entry Qij corresponds to the rate of transitioning from
state i to state j. The probability distribution of the system state at time t is given by:

P (t) = exp(Qt),

where exp(Qt) denotes the matrix exponential.

Transition Probabilities for Small Populations

To illustrate this, we consider a small population of size N and construct the full state
space of all possible (s, i) pairs with s+ i ≤ N . The generator matrix Q is built using the
infection and removal transition rates described in Section 6.1. The diagonal entries are
set to ensure that each row of Q sums to zero.

Given a state (st, it) at time t, the transition probabilities at time t + 1 are then
obtained from the corresponding row of the matrix exp(Qt):

P
(
(S(t+ 1), I(t+ 1)) = (s, i) | (S(t), I(t)) = (st, it)

)
=
[
exp(Qt)

]
(st,it),(s,i)

.

Computational Complexity

While exact, this approach scales poorly with increasing population size. The number of
valid states in the (S, I) space grows quadratically with N :

#states =

(
N + 2

2

)
.

For instance, when N = 100, there are already over 5,000 states; for N = 200, this
increases to over 20,000. Thus, this approach becomes infeasible even for moderate N .

This motivates the use of simulation-based approaches such as particle MCMC, which
we demonstrate in the following example.

6.3 Example of Bayesian Inference in a SIR model

Example 6.1 (SIR Bayesian Inference). We start by simulating some data from a SIR
model. Let there at t = 0 be i = 10 infected and s = 490 susceptible. Let the infection
rate be λ = 0.5, the removal rate be γ = 0.2, and the dispersion parameter be ϕ = 3.5.
We have observations t = 0, . . . , 10 for the first 10 days of the epidemic.

We suppose that we only observe the initial state and I(t) as a noisy measurement,
that is we let our observations be

Y (0) =
(
S(0), I(0)

)
Y (t) | I(t), ϕ ∼ NegBinomial

(
ϕ, I(t)

)
, t = 1, . . . , 10.
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Figure 6.1: A simulated dataset of the epidemic in Example 6.1 alongside our noisy
observations.

We define the priors for λ, γ and ϕ as

λ ∼ Normal+(0, 1),

γ ∼ Normal+(0, 1),

1√
ϕ
∼ Normal+(0, 1),

where the prior for the over-dispersion parameter ϕ follows the recommendation in Stan
Development Team [2025b], which also gives a lot of mass on low amounts of over-
dispersion. Our simulated data set is shown in Figure 6.1. A prior predictive check is
shown in Figure 6.2. The prior predictive check indicates that the chosen priors lead to
reasonable and plausible simulated data, consistent with the observed patterns in the data.
We run the Particle Marginal Metropolis-Hastings (PMMH) algorithm using the standard
settings given in Table 4.1. The R code for this analysis is available in the accompanying
GitHub repository.

Figure 6.3 shows a posterior predictive check for the observed number of infected,
verifying that the posterior distribution generates data consistent with the observations.
Table 6.1 presents the estimated parameters, including their posterior means, 95% credible
intervals and diagnostic measures. The MCMC Effective Sample Size (MCMC ESS) are

all above the recommendation of 400 and the split-R̂ are all below 1.01, so we can reliably
use the samples for inference. As shown in the table, the model accurately recovers the
true parameter values of λ and γ used to generate the simulated data.
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Figure 6.2: The bold dark blue line represents the observed outbreak for Example 6.1,
while the light blue lines show 100 outbreaks simulated from the prior distribution.

Figure 6.3: The bold dark blue line represents the observed outbreak for Example 6.1,
while the light blue lines show 100 outbreaks simulated from the posterior distribution.

42



Parameter True Value ESS split-R̂ Mean 95% Credible Interval

λ 0.5 919 1.00 0.61 [0.26, 1.07]
γ 0.2 751 1.00 0.29 [0.02, 0.60]

Table 6.1: Diagnostics, posterior mean, and 95% credible intervals for parameters.

6.4 Comparison to ODE

In this section, we provide a simple example to demonstrate how the ODE approach can
differ substantially from our stochastic approach in small populations. The ODE model,
derived by considering the system’s average behavior over time [Hethcote, 2000], is given
by the following set of differential equations:

dS

dt
= − λ

N
SI,

dI

dt
=

λ

N
SI − γI,

dR

dt
= γI.

This deterministic model assumes that the state variables are continuous and approximates
the mean behavior of the epidemic. This model is coded in Stan [Stan Development Team,
2025a].

We initialize the system at time t = 0 with i = 3 infected individuals and s = 47
susceptible individuals. We use a smaller population than in Example 6.1 to highlight the
differences between the stochastic and deterministic models more clearly. The infection
rate is set to λ = 0.5 and the removal rate to γ = 0.2. We consider observations at times
t = 0, . . . , 15, corresponding to the first 15 days of the epidemic. Our observations are
modeled as:

Y (0) =
(
S(0), I(0)

)
,

Y (t) | I(t) ∼ Poisson(I(t)), t = 1, . . . , 15,

and the data is generated using the stochastic approach described in Section 6.1. We now
want to compare the parameter estimations for λ and γ using the ODE approach and
using the stochastic approach. We define generic priors for λ and γ for both approaches as

λ ∼ Normal+(0, 1),

γ ∼ Normal+(0, 1).

We generate 100 datasets and compute the RMSE of the posterior mean of λ and γ. The
R code for this analysis is available in the accompanying GitHub repository.

The results are summarized in Table 6.2. We see, that the ODE approach has a much
higher RMSE than using the true data generating process (DGP) with the stochastic
approach. This shows, that the inference can change substantially depending on which
method is used. Note though, that the ODE approach is faster.
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Parameter ODE RMSE Stochastic RMSE

λ 0.29 0.23
γ 0.34 0.22

Table 6.2: Comparison of ODE and stochastic model for parameter estimation. The values
are the estimated RMSE.
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7 Application to Epidemiological Data

In this chapter, we present Bayesian inference performed on a real disease outbreak.

7.1 Data and Model

In 1978, an influenza outbreak occurred at a boarding school in England, affecting 763 boys.
The outbreak lasted 14 days. The data, originally reported in Communicable Disease
Surveillance Centre and Communicable Diseases (Scotland) Unit [1978] and available in
the R package outbreaks Jombart et al. [2022], includes daily counts of students in bed.
It is believed that one student initiated the infection. The R code for this analysis is
available in the accompanying GitHub repository.

Figure 7.1 illustrates the daily counts of students in bed during the outbreak. The
goal of this analysis is to estimate the number of infected students each day and estimate
key quantities such as the basic reproduction number, R0, and mean recovery time of the
disease.

A naive way to estimate the number of infected students each day would be to use the
observed number of students in bed as an estimate for the number of infected students.

Similarly to Example 6.1, our model is specified as follows. At time t = 0, there is
i = 1 infected student and s = 763 − 1 susceptible students. We have observations at
times t = 0, 1, . . . , 14 for the epidemic. Since we only observe students confined to bed
based on symptoms, we assume that the true number of infected is a latent state. Thus,
we define our model as

Y (0) =
(
S(0), I(0)

)
,

Y (t) | I(t), ϕ ∼ NegBinomial
(
ϕ, I(t)

)
, t = 1, . . . , 14,

where Y (t) represents the observed number of students in bed and I(t) is the latent
number of infected students.

For the infection period, parameterized by the recovery rate γ, we specify a truncated
normal prior to ensure that γ is positive. Based on reports from the CDC [Centers for
Disease Control and Prevention, 2025] we decide that the infectious period should have
a mean of 3 days (i.e., 1/γ = 3 days). Additionally, we incorporate the belief that the
probability of the mean infectious period being less than 1 day is 0.1, i.e., P (γ > 1) = 0.1.
Solving for the parameters of a truncated normal distribution, we obtain

γ ∼ Normal+(0, 0.412).

Similarly, for the infection rate λ (the rate at which an infected individual transmits
the disease to a susceptible individual), we use a truncated normal distribution. For
a disease to persist, the infection rate λ should typically exceed the recovery rate γ.
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Figure 7.1: Daily counts of students in bed during the 1978 influenza outbreak at a
boarding school in England.

Assuming a mostly susceptible population at the start of the epidemic, the effective
transmission rate per infected individual is approximately λ, and we model the average
time between new infections as 1/λ = 2 days. Additionally, we incorporate the belief
that the probability of the mean infection interval being shorter than 1 day is 0.2; that is,
P (1/λ < 1) = P (λ > 1) = 0.2.

Solving for the parameters, we get

λ ∼ Normal+(0, 0.632).

For ϕ we choose a generic prior

1√
ϕ
∼ Normal+(0, 1),

as recommended in Stan Development Team [2025b], which also gives a lot of mass on
low amounts of over-dispersion.

7.2 Prior and Posterior Predictive Checks

We start by performing a prior predictive check based on 100 samples, which can be seen
in Figure 7.2. We see that most of the outbreaks seem to peak later than in our case, but
overall the priors are reasonable.

We run the Particle Marginal Metropolis-Hastings (PMMH) algorithm using the
standard settings given in Table 4.1. All MCMC Effective Sample Size (MCMC ESS) are

well above 400, and all split-R̂ values are below the threshold of 1.01, so we can reliably
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Figure 7.2: The bold dark blue line represents the observed outbreak for the 1978 influenza
outbreak at a boarding school in England, while the light blue lines show 100 outbreaks
simulated from the prior distribution.

use our posterior samples for inference. We start by performing a posterior predictive
check, which is shown in Figure 7.3. The posterior predictive check looks good with it
aligning well with the observed data.

7.3 Results

Posterior means and 95% credible intervals are shown for the Bayesian models (with
informative and vague priors), while maximum likelihood estimates and 95% confidence
intervals are shown for the frequentist model. Table 7.1 presents a side-by-side comparison
of parameter estimates under all three approaches.

� Informative priors (base): As described in Section 7.1.

� Vague priors: Priors for λ and γ are changed to Normal+(0, 1).

� Frequentist: Parameters estimated using maximum likelihood estimation (MLE).

The model with vague priors was fitted by re-weighting the samples, as outlined in
Appendix B. The MLE was obtained by numerically optimizing the likelihood using
Iterated Filtering 2 (IF2) [Ionides et al., 2015], which refines parameter estimates through
a sequence of perturbation, filtering, and resampling steps.

To quantify uncertainty around the MLE, we used a percentile bootstrap procedure
[Efron and Tibshirani, 1994]. After obtaining the MLE, we simulated 200 bootstrap
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Figure 7.3: The bold dark blue line represents the observed outbreak for the 1978 influenza
outbreak at a boarding school in England, while the light blue lines show 100 outbreaks
simulated from the posterior distribution.

Informative Priors Vague Priors Frequentist
Parameter Mean 95% CI Mean 95% CI Estimate 95% CI

λ 1.80 [1.58, 2.05] 1.84 [1.61, 2.13] 1.90 [1.61, 2.28]
γ 0.49 [0.44, 0.58] 0.50 [0.44, 0.59] 0.50 [0.45, 0.55]
R0 3.67 [2.93, 4.46] 3.74 [2.96, 4.60] 3.80 [3.23, 4.67]
Mean Recovery Time 2.04 [1.73, 2.29] 2.03 [1.70, 2.29] 2.00 [1.80, 2.23]

Table 7.1: Comparison of parameter estimates under different methods.

datasets from the model and re-estimated parameters using IF2. Confidence intervals
were constructed by taking quantiles of the resulting bootstrap distributions.

Because our model is stochastic and starts with a single infected individual, there
is a nonzero probability that the outbreak will die out. Specifically, since the time to
transmission and removal are exponentially distributed with rates λ = 1.90 and γ = 0.50,
the probability of a removal occurring before any transmission is

P(removal before transmission) =
γ

λ+ γ
=

0.50

1.90 + 0.50
≈ 0.20.

In such cases, the likelihood surface becomes degenerate, and the MLE does not exist.
Consequently, our bootstrap analysis is conditioned on realizations where the MLE exists,
and the resulting frequentist confidence intervals are conditional on MLE existence.

Across all three approaches, the estimates are broadly consistent. The posterior means
under both Bayesian models lie close to the MLEs, and the associated credible intervals
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Figure 7.4: Posterior density of λ under the Bayesian model with informative priors, based
on the 1978 influenza outbreak at a boarding school in England. The black dot indicates
the posterior mean, and the horizontal line shows the 95% credible interval.

(or confidence intervals, in the frequentist case) show considerable overlap. This indicates
that the data are sufficiently informative to yield stable estimates regardless of prior
specifications.

Figure 7.4 shows the posterior density for λ under the informative prior model. Densities
for the remaining parameters (γ, R0, and mean recovery time) are presented in Appendix
D (Figures D.3-D.5).

This data has been analyzed previously, for instance in Grinsztajn et al. [2021]. They
employed a Bayesian approach and modeled it as an ODE, as described in Section 6.4.
They got a posterior mean of λ of 1.73 and a posterior mean of γ as 0.54, roughly similar
to our results.

In Figure 7.5, we see a plot of the median estimated number of infected individuals
for the informative priors model, along with a 95% credible interval. At several time
points, the observed number of infected lies outside this credible interval, suggesting a
non-negligible amount of observation noise.

7.4 Conclusion

In this chapter, we have shown that a fully Bayesian treatment of a stochastic SIR model
with a negative-binomial observation process provides a probabilistic reconstruction of the
1978 influenza outbreak at the boarding school. By modeling the true number of infected
as a latent process and allowing for over-dispersion in the observations, we obtained
credible intervals for the unobserved epidemic trajectory (Figure 7.5) that reveal the
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Figure 7.5: The dark orange points are the observed students in bed, the blue line is
the median estimate of the number of infected, and the green ribbon is the 95% credible
interval for the number of infected.

extent of observation noise, something a simple approach without latent states would
miss.

Our results were fairly robust to prior specification, with both informative and vague
priors yielding posterior mean estimates that closely align with those obtained using
maximum likelihood methods.

Moreover, our stochastic formulation captures random fluctuations inherent in small,
closed populations more naturally than deterministic ODE models, helping explain slight
differences when compared to previous ODE-based Bayesian analyses such as in Grinsztajn
et al. [2021]. Overall, this application demonstrates the usefulness of stochastic SIR
models and illustrates how they can be effectively used and interpreted within a Bayesian
framework.
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8 Conclusion

This thesis has presented a comprehensive treatment of Particle Markov chain Monte
Carlo (PMCMC) methods for Bayesian inference in state-space models (SSMs). Beginning
with a review of fundamental Monte Carlo techniques, including importance sampling and
sequential importance sampling, we highlighted key challenges such as particle degeneracy
and explored resampling strategies to address them. Building upon this foundation,
the formal development and theoretical properties of PMCMC algorithms were detailed,
illustrating how they enable exact Bayesian inference despite relying on unbiased likelihood
estimates obtained via particle filtering.

To bridge theory and practice, we introduced bayesSSM, an R package designed to
perform Bayesian inference in SSMs using Particle Marginal Metropolis-Hastings (PMMH).
This package includes features such as adaptive tuning of proposals, automatic selection of
the number of particles, and diagnostic tools, thereby facilitating the application of PM-
CMC methods by practitioners. The practical utility of these methods was demonstrated
through a case study applying PMCMC to a stochastic Susceptible-Infectious-Recovered
(SIR) model fitted to historical influenza outbreak data from a British boarding school.
This example illustrated the importance of accounting for stochasticity in small-population
epidemic models and showcased the potential of PMCMC for rigorous Bayesian analysis
in epidemiological research.

While the results confirm the viability and flexibility of PMCMC methods, several
limitations remain. The computational demands of PMCMC can be substantial, particu-
larly for high-dimensional models or long time series. Future research directions include
extending bayesSSM to incorporate alternative methods for Bayesian inference beyond
PMMH, as well as exploring other variations of particle filters. Further development of
adaptive strategies and parallelization techniques could also enhance the scalability and
efficiency of these methods.

In conclusion, this thesis contributes both theoretical insights and practical tools
to advance Bayesian inference for complex dynamic systems modeled via state-space
frameworks. By combining methodological rigor with accessible software, it aims to
empower researchers to incorporate uncertainty and stochastic dynamics more fully in
their analyses, fostering improved understanding and decision-making in applied fields.

All code and supplementary materials used throughout this thesis are openly available
at: https://github.com/BjarkeHautop/master-thesis.
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A MCMC

Markov chain Monte Carlo (MCMC) methods are used to generate samples from complex
probability distributions when direct sampling is infeasible. Let π(x) be a density that
we want to sample from. An MCMC algorithm constructs a Markov chain {Xt}t≥1 with
transition kernel P (x,A) which has π(x) as stationary distribution.

One widely used MCMC method is the Metropolis-Hastings algorithm. It generates a
sequence of samples from π(x) by proposing a candidate x′ from a proposal distribution
q(x′|xt) based on the current state xt. The candidate is accepted with probability:

α = min

{
1,

π(x′)q(xt|x′)
π(xt)q(x′|xt)

}
If the candidate is accepted, the next state is set to xt+1 = x′; otherwise, xt+1 = xt.

A key property ensuring that the chain has the desired stationary distribution is that
the algorithm satisfies the detailed balance condition with respect to π(x), that is

π(xt)q(x
′ | xt)α(xt, x′) = π(x′)q(xt | x′)α(x′, xt),

for all states xt and x
′. Provided that the Markov Chain satisfies some required regularity

conditions on the proposal distribution it has the correct stationary distribution. A
sufficient condition is that

π(x) > 0 =⇒ q(x | x′) > 0 for any x, x′,

ensuring irreducibility, and that the chain is aperiodic [Robert and Casella, 2004].
In practice, when using MCMC methods for inference the first part of the chain is

discarded to allow the chain to converge to the stationary distribution. This is referred to
as burn-in.

MCMC diagnostics

Since convergence of MCMC is only guaranteed asymptotically, we must rely on diagnostic
methods to assess convergence when working with a finite number of samples. Assume
that we do MCMC to do inference about a parameter θ, which, for ease of notation, we
suppose is a scalar. For models involving multiple parameters, the diagnostic methods
described below are applied to each parameter individually.

Potential Scale Reduction

A method to evaluate the convergence of a MCMC chain is to run several independent
chains and compare the behavior between them. This is the idea of the potential scale
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reduction statistic R̂ first introduced in Gelman and Rubin [1992]. The potential scale
reduction statistic compares the between-chain variance to the within-chain variance. If
all chains are at equilibrium, these will be the same, and R̂ will be 1. If they haven’t
converged to a common distribution, the R̂ statistic will be greater than 1.

Suppose we have a set of K Markov chains θk which each has M samples θ
(m)
k . The

between-chain variance estimate is

B =
M

K − 1

K∑
k=1

(
θ
(·)
k − θ

(·)
·

)2
,

where θ
(·)
k is the mean for chain k

θ
(·)
k =

1

M

M∑
m=1

θ
(m)
k ,

and θ
(·)
· is the overall mean of the chains

θ
(·)
· =

1

K

K∑
k=1

θ
(·)
k .

The within-chain variance is averaged over the chains,

W =
1

K

K∑
k=1

s2k,

where

s2k =
1

M − 1

M∑
m=1

(
θ
(m)
k − θ(·)k

)2
.

The variance estimator is given by a mixture of the within-chain and cross-chain sample
variances,

V̂ar
+
(θ) =

M − 1

M
W +

1

M
B, (A.1)

This weighted combination accounts for the uncertainty in both the within-chain and
between-chain variances. Finally, we can define the potential scale reduction statistic as

R̂ =

√
V̂ar

+
(θ)

W
.

Gelman et al. [2013] introduced split-R̂ as a more sensitive diagnostic for convergence in
MCMC sampling. The method involves splitting each of the K chains into two halves: the
first M/2 samples and the last M/2 samples, giving 2K chains. The standard R̂ statistic
is then computed across these 2K chains. By comparing the two halves of each chain,
split-R̂ can detect issues such as slow mixing or nonstationarity within individual chains
that might be overlooked when only comparing different chains.

A typical guideline is that R̂ values above 1.01 indicates that further sampling is
needed [Stan Development Team, 2024, Vehtari et al., 2021].
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Effective Sample Size

An R̂ close to 1 does not guarantee that an MCMC sample is reliable [Vats and Knudson,
2021]. A sufficiently large MCMC Effective Sample Size (MCMC ESS) is also required to
obtain stable inferences for the quantities of interest. The MCMC samples will typically be
positively autocorrelated within a chain. The MCMC ESS is the number of independent
samples with the same estimation power as the M autocorrelated samples. We follow the
definitions given in Stan Development Team [2024], Vehtari et al. [2021]. We again let K
be the number of chains each consisting of M samples and assume all the chains have
reached the stationary distribution p(θ) with mean µ and variance σ2. The autocorrelation
ρt at lag t ≥ 0 is defined as

ρt =
1

σ2

∫
(θ(n) − µ)(θ(n+t) − µ)p(θ) dθ

=
1

σ2

∫
θ(n)θ(n+t)p(θ) dθ,

where we used that θ(n) and θ(n+t) have the same stationary distribution. We then define
the MCMC ESS Meff of M samples by

Meff =
M

1 + 2
∑∞

t=1 ρt
.

For independent draws (i.e., ρt = 0 for t ≥ 1), we recover Meff = M . When draws are
positively correlated, however, Meff is smaller, reflecting the reduced information content
of the chain, while if they were negatively correlated, the effective sample size will exceed
the number of iterations. The MCMC ESS is a particularly important measure since the
standard error of the estimate of a parameter decreases by 1/

√
Meff and not 1/

√
M .

In practice, the integral of the joint distribution p(θ) is intractable and thus we need
to estimate the effective sample size. We can estimate the autocorrelation ρt by

ρ̂t = 1−
W − 1

K

∑K
k=1 s

2
k ρ̂t,k

V̂ar
+
(θ)

,

where ρ̂t,k is an estimate of the autocorrelation at lag t for the kth Markov chain, and

V̂ar
+
(θ) is defined in Equation (A.1). Because of the increased noise of ρ̂t as t increases,

in practice a truncated sum of ρ̂t is used. We apply Geyer’s initial monotone sequence
criterion, as defined in Geyer [1992], to ensure stability. The effective sample size is
estimated by

M̂eff =
KM

τ̂
,

where

τ̂ = 1 + 2
2k+1∑
t=1

ρ̂t = 1 + 2
m∑
t=0

P̂t − ρ̂0 = −1 + 2
m∑
t=0

P̂t,

and P̂t = ρ̂2t + ρ̂2t+1. Summing over pairs starting from lag 0 ensures that the sequence
P̂t values is non-negative and non-increasing [Geyer, 1992]. So, if we observe negative
estimates of the autocorrelations it is due to finite-sample noise. Thus, we define an initial
positive sequence by choosing the largest m such that P̂t > 0 for all t ∈ {1, . . . ,m}. We
also enforce monotonicity by modifying the sequence P̂t so that it does not exceed the
smallest preceding value, ensuring a non-increasing sequence.

58



B Bayesian Model Assessment

This chapter gives a quick introduction to some common tools used for assessing a Bayesian
model.

Prior predictive check

Before fitting a Bayesian model it is useful to assess whether the prior distributions are
reasonable in the context of the model. This can be done using a prior predictive check,
where data is simulated using parameters drawn from the prior. If the generated data is
implausible, it suggests that the priors may be too weakly or strongly informative.

Posterior predictive check

After fitting a Bayesian model a posterior predictive check is used to evaluate how well
the fitted model explains the observed data. Here, data is simulated using parameter
values sampled from the posterior distribution. If the replicated data fails to resemble the
observed data, it suggests that the model may not capture key aspects of the underlying
data-generating process.

Prior Sensitivity Analysis

Prior sensitivity analysis assesses how sensitive a model’s inferences are to the choice of
prior distributions. It involves re-running the model with different reasonable priors and
comparing the resulting posterior distributions. This analysis helps determine the extent
to which the prior influences the posterior.

Since re-fitting the same model with various priors can be computationally expensive,
an alternative approach is to use importance sampling. Suppose our original prior is p0(θ)
and we wish to assess the sensitivity of our results to an alternative prior p1(θ). For each
MCMC sample θi, we compute the importance weight

w(θi) =
p1(θi)

p0(θi)
,

and then use these weighted samples to approximate the posterior under the new prior.
To improve the stability of these importance weights, especially when some weights

are extremely large, methods such as Pareto smoothed importance sampling (PSIS) have
been proposed [Vehtari et al., 2024].
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C Numerical Stability Tricks

This is a collection of some of the numerical tricks used in the implementation of the
algorithms to avoid underflow and improve efficiency.

Log-Sum-Exp Trick

When aggregating the contributions of multiple particles to the log-likelihood, we need to
compute a sum of the form

Lt =
1

N

N∑
i=1

exp(ℓi),

where N is the number of particles and ℓi is the log-weights. Direct exponentiation
of ℓi can lead to numerical underflow if ℓi is very small. To mitigate this, we use the
log-sum-exp trick [Stan Development Team, 2024]. Define

M = max
1≤i≤N

ℓi.

Then,

log

(
N∑
i=1

exp(ℓi)

)
=M + log

(
N∑
i=1

exp(ℓi −M)

)
.

Thus, the incremental log-likelihood is computed as

logLt = − logN +M + log

(
N∑
i=1

exp(ℓi −M)

)
.

This approach rescales the log-likelihoods so that the exponential terms do not vanish
numerically.

Transformation of Parameters

When parameters are defined on constrained domains, it is often beneficial to transform
them into an unconstrained space to facilitate efficient MCMC proposals. Using a standard
proposal distribution, such as the normal distribution, directly in the constrained space
can lead to proposed values that lie outside the domain, resulting in a likelihood of zero.
Suppose we have a vector of parameters

θ = (θ1, θ2, . . . , θn),
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where some components are defined on a constrained domain. We introduce an invertible
and differentiable transformation gi that maps the constrained θi into an unconstrained
space:

ϕi = gi(θi), i = 1, 2, . . . , n.

For those components that are already unconstrained, we can simply use the identity
mapping, i.e.,

gi(θi) = θi.

A common example is proposing values for a standard deviation, which must be positive,
and we can then instead propose values in log-space.

If p(θ) denotes the joint density of θ and θi = g−1
i (ϕi) is the inverse transformation,

the joint density in the ϕ-space is given by the change-of-variables formula:

pϕ(ϕ) = p
(
g−1
1 (ϕ1), . . . , g

−1
n (ϕn)

) n∏
i=1

∣∣∣∣ ddϕi

g−1
i (ϕi)

∣∣∣∣ .
Taking logarithms yields the transformed log density:

log pϕ(ϕ) = log p
(
g−1
1 (ϕ1), . . . , g

−1
n (ϕn)

)
+

n∑
i=1

log

∣∣∣∣ ddϕi

g−1
i (ϕi)

∣∣∣∣ .
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D Supplementary Figures

Figure D.1: Posterior density estimate for σx in Example 4.2. The black dot indicates the
posterior mean, and the horizontal line represents the 95% credible interval.
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Figure D.2: Posterior density estimate for σy in Example 4.2. The black dot indicates the
posterior mean, and the horizontal line represents the 95% credible interval.

Figure D.3: Posterior density of γ under the Bayesian model with informative priors,
based on the 1978 influenza outbreak at a boarding school in England. The black dot
indicates the posterior mean, and the horizontal line shows the 95% credible interval.

63



Figure D.4: Posterior density of R0 under the Bayesian model with informative priors,
based on the 1978 influenza outbreak at a boarding school in England. The black dot
indicates the posterior mean, and the horizontal line shows the 95% credible interval.
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Figure D.5: Posterior density of the mean recovery time under the Bayesian model with
informative priors, based on the 1978 influenza outbreak at a boarding school in England.
The black dot indicates the posterior mean, and the horizontal line shows the 95% credible
interval.
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