This function creates a list of tuning parameters used by the
pmmh
function. The tuning choices are inspired by Pitt et al.
[2012] and Dahlin and Schön [2019].
Arguments
- pilot_proposal_sd
Standard deviation for pilot proposals. Default is 0.5.
- pilot_n
Number of pilot particles for particle filter. Default is 100.
- pilot_m
Number of iterations for MCMC. Default is 2000.
- pilot_target_var
The target variance for the posterior log-likelihood evaluated at estimated posterior mean. Default is 1.
- pilot_burn_in
Number of burn-in iterations for MCMC. Default is 500.
- pilot_reps
Number of times a particle filter is run. Default is 100.
- pilot_algorithm
The algorithm used for the pilot particle filter. Default is "SISAR".
- pilot_resample_fn
The resampling function used for the pilot particle filter. Default is "stratified".
References
M. K. Pitt, R. d. S. Silva, P. Giordani, and R. Kohn. On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. Journal of Econometrics, 171(2):134–151, 2012. doi: https://doi.org/10.1016/j.jeconom.2012.06.004
J. Dahlin and T. B. Schön. Getting started with particle Metropolis-Hastings for inference in nonlinear dynamical models. Journal of Statistical Software, 88(2):1–41, 2019. doi: 10.18637/jss.v088.c02