Skip to contents

This function creates a list of tuning parameters used by the pmmh function. The tuning choices are inspired by Pitt et al. [2012] and Dahlin and Schön [2019].

Usage

default_tune_control(
  pilot_proposal_sd = 0.5,
  pilot_n = 100,
  pilot_m = 2000,
  pilot_target_var = 1,
  pilot_burn_in = 500,
  pilot_reps = 100,
  pilot_algorithm = c("SISAR", "SISR", "SIS"),
  pilot_resample_fn = c("stratified", "systematic", "multinomial")
)

Arguments

pilot_proposal_sd

Standard deviation for pilot proposals. Default is 0.5.

pilot_n

Number of pilot particles for particle filter. Default is 100.

pilot_m

Number of iterations for MCMC. Default is 2000.

pilot_target_var

The target variance for the posterior log-likelihood evaluated at estimated posterior mean. Default is 1.

pilot_burn_in

Number of burn-in iterations for MCMC. Default is 500.

pilot_reps

Number of times a particle filter is run. Default is 100.

pilot_algorithm

The algorithm used for the pilot particle filter. Default is "SISAR".

pilot_resample_fn

The resampling function used for the pilot particle filter. Default is "stratified".

Value

A list of tuning control parameters.

References

M. K. Pitt, R. d. S. Silva, P. Giordani, and R. Kohn. On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. Journal of Econometrics, 171(2):134–151, 2012. doi: https://doi.org/10.1016/j.jeconom.2012.06.004

J. Dahlin and T. B. Schön. Getting started with particle Metropolis-Hastings for inference in nonlinear dynamical models. Journal of Statistical Software, 88(2):1–41, 2019. doi: 10.18637/jss.v088.c02